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Abstract:

Recent work reported in the literature suggests that for the long-time integration of Hamiltonian
dynamical systems one should use methods that preserve the symplectic (or canonical) struc-
ture of the flow. Here we investigate the symplecticness of numerical integrators for constrained
dynamics, such as occur in molecular dynamics when bond lengths are made rigid in order
to overcome stepsize limitations due to the highest frequencies. This leads to a constrained
Hamiltonian system of smaller dimension. Previous work has shown that it is possible to have
methods which are symplectic on the constraint manifold in phase space. Here it is shown
that the very popular Verlet method with SHAKE-type constraints is equivalent to the same
method with RATTLE-type constraints and that the latter is symplectic and time reversible.
(This assumes that the iteration is carried to convergence.) We also demonstrate the global
convergence of the Verlet scheme in the presence of SHAKE-type and RATTLE-type con-
straints. We perform numerical experiments to compare these methods with the second-order
backward differentiation method, commonly recommended for ordinary differential equations

(ODEs) with constraints.



1. Introduction. Vibrational Newtonian models used in molecular dynamics simulations

lead to Hamiltonian systems of ordinary differential equations of the form

(1) Mg = p

(2) p = -VVig)

where ¢,p € R" are, respectively, positions and momenta of atoms of the molecule which
are regarded as point masses, M is a positive definite (typically diagonal) mass matrix and
V :R" — R is a potential function. In [22, 27], rigid bonds were incorporated into molecular
models to improve efficiency. Fixing bond lengths and bond angles in the vibrational model
results in holonomic constraints of the form ¢(¢) = 0 and leads to constrained dynamical

equations (Lagrangian equations of the first kind):

(3) Mg = p
(4) po= —VoVig)+9'(9)A
(5) glg) = 0

(see, e.g., Hildebrand [15]).

A simple two-step discretization was used by Verlet [28] to solve (1)~(2) and it remains
the most popular discretization scheme for unconstrained equations. In [22], a direct numer-
ical integration scheme (SHAKE) based on the Verlet method and preserving the constraint
relationships was presented for (3)—(5). This scheme was later adapted by Andersen [3] into
an alternative velocity-level formulation that preserves certain additional invariants; this is the
basis of the RATTLE algorithm.

The flow of a Hamiltonian system like (1)-(2) possesses an important symplectic geometric
structure [4]. Briefly, the sum of the areas of the projections of an oriented two-dimensional
surface in phase space onto the ¢;p; coordinate planes is unchanged under the flow. Much recent
research has gone into developing symplectic numerical discretization schemes that inherit the

symplectic structure of the original system. It has been observed in numerical experiments [20]
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that symplectic methods with fixed stepsize possess better long-term stability properties than
nonsymplectic methods. In [21] it was demonstrated that the Verlet method is symplectic,
and further work (recently surveyed by Sanz-Serna [24]) has uncovered a variety of symplectic
discretization schemes.

The symplectic integration of the constrained equations (3)—(5) was treated in [16] via sym-
plectic parameterization of the constraint manifold and by methods based on Dirac’s theory
of weak invariants. These methods lead to unconstrained Hamiltonian systems which can be
handled by direct application of symplectic methods, but the new Hamiltonians are nonsepa-
rable, meaning that they cannot be written in the form H(q,p) = T(p) + V(q), and hence are
not amenable to discretization via explicit symplectic methods like the Verlet scheme. This
appears to rule out parameterization and weak-invariant methods for the computationally in-
tensive molecular dynamics application.

In this paper, we consider direct symplectic numerical discretizations of the constrained
equations (3)—(5). We show that the Verlet methods with SHAKE-type and RATTLEtype
constraint algorithms yield identical solutions for the positions at meshpoints and at half-steps
in the velocity. Both methods preserve the wedge product, although SHAKE is not, strictly
speaking, a symplectic method, as the meshpoint velocities are not tangent to the constraint
manifold defined by (5). Verlet with either SHAKE-type or RATTLE type constraints is
time reversible, an important feature for difference schemes [7]. We demonstrate that both
methods are reducible to a certain discretization of an unconstrained system of differential
equation, from which a global convergence result follows. Other numerical methods for con-
strained differential equations based on backward differentiation formulas (“BDF” methods)
are in use for engineering problems in constrained form; we compare RATTLE in numerical

experiments with a second-order BDF method, and find the symplectic scheme the clear winner.

2. Symplectic Maps and Symplectic Discretization Schemes. For full rank ¢, we

refer to the set M = {(q,p) | g(¢) = 0,¢'(¢)M~p = 0} as the “solution manifold” associated



with (3)—(5). (This definition is justified by observing that the equations (3)—(5) define a hidden
constraint g'(¢)M~'p = 0 which must be satisfied by initial values (qo,po) in order to guarantee
existence of smooth solutions.)

To define a natural “symplectic structure” [4] on M, we first parameterize the manifold
locally in 2n—2m variables, say positions 6 € R"™™ and momenta # € R"~™. This can be done
in such a way that rewriting the differential equations (3)-(5) as equations in the parameters
results in an unconstrained Hamiltonian system, meaning that the 2-form dé Ad#f is preserved by
the reduced flow. Then it can be shown [16] that with p and ¢ restricted to M, d6 Ad8 = dgAdp.
The flow (on M C R?") of (3)-(5 preserves the 2-form dg A dp. This motivates the following
definition: Let (@), P) = ¢(q, p) be a differentiable mapping from M into itself, ¢ is said to be
a symplectic mapping if it preserves the restriction to M of the symplectic form in R?*" i.e. if
d@ NdP = dg A dp.

A one-step method for (3)—(5) is defined as a mapping 5, : M — M on a parameter h that
takes (¢n, prn) into (¢nt1,Pnt+1). One of the simplest symplectic discretizations (i.e., for which
¥y, is a symplectic mapping) for integrating the unconstrained equations (1)-(2) is the Verlet

scheme:?2

(6) Gn+1 — 2(]n + Gn—1 = _hQM_lvq‘/(qn)

Verlet defined p,, = M(¢n+1 — ¢n—1)/2h. These equations can be rewritten in the following

velocity formulation:

(7) qn-l—l = gn ‘I’ hM—lpn-}—l/Q
(8) Patij2 = Pn— (R/2)V,V(gn)
(9) Prtr = Pryiyz — (B/2)VV(¢nt1)

Here (g, pn) represents an approximation to the solution (¢(¢,),p(t,)) at time ¢,, and the

constant stepsize A is just the difference of any two successive time points: t,41 = ¢, + h.

2 This scheme is sometimes referred to by numerical analysts as Stérmer’s rule.
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Although (7)—(9) and (6) are mathematically equivalent, it is known (see, e.g., Hairer,
Ngrsett, and Wanner [14, p. 430]) that (6) has an instability with respect to rounding errors
which is not present in leap-frog or in (7)-(9), hence the velocity formulation is to be preferred.

The method (7)—(9) is second-order accurate in time, meaning that on a fixed interval [0, 7],
if we define the error at the nth time level ¢,, = nh < T in the solution computed with stepsize
hoas el = [|(gn, pn) — (q(tn), p(t))|], then € = O(h?), uniformly, i.e., there are constants C' > 0

and hg > 0 such that
el < Cn?

whenever h < hg and 0 <n < N =1T/h.

A simple linear coordinate transformation allows us to restrict attention in the sequel to
the case M = I. Setting ¢ = M=% and p = MY?p in (1)-(2) or in (3)-(5), and setting
V(q) = V(MY%q) and g(q) = §(M'/%q), we find that the form of the equations is unchanged
except that in the new system the mass matrix is I. All of the results of this paper apply

equally to cases with M any positive definite matrix (so that a positive definite square root

M2 is defined).

3. Direct Symplectic Discretization of Constrained Systems. A popular method
for adapting the Verlet method to handle bond-length and bond-angle constraints is the SHAKE
algorithm [22]. If the algorithm, as described in [2], is iterated to convergence, it can be ex-

pressed in our notation (with M = I) as
(10) Gut1 = 205 — Goo1 — K2VV(gn) + 129" (g0) s
(11) 9(nt1) = 0

Setting p,,41/2 = (¢ut1 — ¢n)/h yields the leap-frog form:

(12) Gn+1 = gn ‘I’ hpn-}—l/?
(13) Prt1jz = Pa—1j2 — AV V(gn) + hg' () A
(14) 9(Gny1) = 0



The local error occurring after one step with (12)-(14) is O(h®). If we further define p, =

(¢n+1 — qn-1)/(2h), we obtain

(15) Gnt1 = Gnt hppy1ye

(16) Potijz = Pn— (h/2)VV(an) + (7/2)9'(¢n)

(17) 9(¢nt1) = 0

(18) Prtt = Pugijz — (B/2)VV(gng1) + (7/2)9'(gn41) Anta

For convenience, and to distinguish our formulation from other possible formulations of SHAKE,
we refer to (15)—(18) as VS (for velocity-level SHAKE). VS cannot be a symplectic method as
we have defined it above since, although ¢(¢,) = 0 at every grid point, the hidden constraint
will typically fail to be satisfied: ¢'(q,)M ~'p, # 0, even when the starting values lie in M. On
the other hand we can get another perspective by viewing (15)-(18) as a one-step mapping in

Mo ={(q,p)|g(q) = 0}. Here the differentials obey

(19) dgnt1 = dgn + hdp, 41/

(20) dpnyrsz = dpn — (h/2)AVV(g) + (R/2)d(g'(¢0)"An)

(21) 9 (¢n41)dgnyr = 0

(22) dppy1 = dppyijz — (1/2)dVeV (gryr) + (h/2)d(g'(¢r41) Ant1)

Letting the Hessian of V' be denoted by V", we see that dV,V(¢,) = V"(q,)dg,. Taking the

wedge product of differentials at the end of a step, we have

g1 Ndpryr = dgngs A(dpayryz — (h/2)V"(Grs1)dgng)
(23) = dgut1 A dpn+1/2 - (h/Q)dqn—l—l A V"(‘]n+1)d‘In+1
+(h/2)dgni1 A d(g"(gns1) Ang1)

The second term in (23) can be eliminated by use of the following lemma which follows from

the skew-symmetry of the wedge product and from the fact that for a matrix B of appropriate

dimensions, du A (Bdv) = (B'du) A dv.



LeMMA 3.1. Let du be an arbitrary differential in R™, and let A be any n X n real symmelric

matriz then du A (Adu) = 0.

Another lemma allows us to eliminate the third term in (23):
LEMMA 3.2. dg, A d(g'(gn)' M) =0

Proof:

dg, N d(g'(q2)'An) = dgn A g'(gn) dN, + Z A dg, AT dg,

=0
where the components of ), have been indexed by a superscript and I is the Hessian of the
tth constraint function.
Now dg, A ¢'(¢n) dN, = ¢'(¢n)dg, A dX, = 0, since g(g,) = 0 = ¢'(¢,)dg, = 0. Each of the
terms of the summation can be eliminated by Lemma 1, proving Lemma 2. O

Applying the lemmas in (23), we arrive at

dqn—H A dpn-}—l = dQn-}—l A dpn+1/2
Next, from (19), we have
dnt1 N dppy1/a = (dgn + hdpyyi/2) A dpyiq)s

= dgy Ndppya/e

= dgn A (dpn = (h/2)dV,V (gn) + hd(g'(gn) An))
Applying both lemmas to simplify the latter expression, we have shown that

dqn—}—l A dpn—l—l = dqn A dpn

and it follows that (15)—(18) preserves the wedge product.

4. Velocity-Level Constraints: RATTLE. Although VS does not define a symplectic
mapping, one can correct this deficiency by a simple device: if the momenta p, 41 are projected

onto the hidden constraints, then the result is a one-step mapping that both (i) maps M into M
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and (ii) preserves the wedge product. The converged RATTLE algorithm [3] can be expressed

as
(24) Gn+1 = gn ‘I’ hpn-}—l/?
h h
(25) Prt1jz = Pn—5VeV(a) + 59’(qn)t/\5f)

(r)

where J;,’ is chosen so that

(26) 9(Gnt1) =0
and

h h v
(27) Pn+l = Pnt1/2 — §VqV((1n+1) + 59/(Qn+1)tA£z+)1

(v)

where A7/, is chosen so that

(28) 9'(ng1)prg1 =0

We refer to (24)—(28) as a VR step. If we write

Gnt1 = Gn + hppy1)2

then we find

h
Pr41/2 = Prn—-1/2 — thv((]n) + 59/(Qn)t(/\£br) + /\;v))

(v)

where Ay’ can be written explicitly in terms of p,, and V,V(q,). Here /\ﬁf) is chosen so that

9(Gn + Bpry1/2) =0

we recognize that this is equivalent to the leap-frog variant of the VS method with A, =
%(AS) + /\%v)), which is simply a change of variables for the unknown Lagrange multipliers.
Thus VS=VR at the half steps {,,/5, but RATTLE satisfies both position and velocity

constraints at meshpoints.
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To see that solutions generated by the RATTLE method at meshpoints preserve the wedge

product, we note that, from (27),

(v)

h h
dgnt1 A dppt1 = dgpp1 A dpn+1/2 - §dQn+1 A quV(QnH) + §d‘]n+1 A dg,(‘]n+1 )t/\n_H

by the reasoning of the previous section, the latter two terms here vanish, and then again using

the arguments of the previous section, we have that

dgn+1 N dppy12 = dgn N dpp_1/:

and it follows that

dqn—}—l A dpn—l—l = dqn A dpn

so the method is symplectic.
Note that VR can also be viewed as a method by which the VS steps are symplectically

projected into M, since we can rewrite the equations as

(29) Gnt1 = qnt hppyise
(30) Prtrjz = Pn— (B/2)VV(gn) + (h/2)g"(:)
31)  g(gut1) = 0

(32) Pt = (L= H(Gns1))(Prsryz = (R/2)VV (gng1) + (5/2)9'(gn1) Angr)

where H(q) = ¢'(¢)"(¢'(0)9'(0)")""9'(q) is a projector matrix.

5. Global Convergence of the SHAKE and RATTLE Methods. (15)-(18), with
or without the endpoint projection defines an approximation of (3)—(5) which is locally O(h?).
This means that starting from the same initial point, the exact and approximate solutions will
differ after a single time step of size h by an amount that tends to zero like the third power
of h; however, this fact alone does not imply global second-order convergence of the method
as the classical (unconstrained) ODE discretization theory does not carry over directly to the

constrained case.
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Noting that both bond angle and bond length type constraints are quadratic greatly simpli-
fies the discussion. As we have seen, the fact that the constraint (5) is identically satisfied along
solutions implies that the equation ¢'(¢)p = 0 is also satisfied along solutions. Differentiating
the latter equation with respect to time yields

9'(0)p+9"p,p] = 0

where ¢[.,.] represents the tensor second derivative on two arguments. Because the constraints
are assumed quadratic, the expression ¢”[p, p] is independent of ¢. Substituting for p from (4),

we get

9(@(=VV(9) +9'(9)' ) + ¢"[p,p] = 0
We can solve this equation for A = A(¢, p). Reintroducing this expression in (3)—(4) results in
(33) g =p

—(I =H)V,V(q) — ¢'(0)'(d'(0)g'(0)") " 9" p, p]

(34) p
This is an (unconstrained) ODE system which preserves the hidden constraint as an integral
invariant. It is probably not computationally efficient to formulate and directly integrate (33)-
(34) numerically, and, moreover, this underlying ODE is not typically Hamiltonian.® However,
the following theorem shows that if the equations of SHAKE and RATTLE are solved suffi-
ciently accurately, then they are equivalent to the direct discretization of (33)-(34) by a certain
numerical scheme.

THEOREM 5.1. Neglecting rounding errors, the VR and VS methods are step-by-step
equivalent to the discretization of (33)-(34) by a convergent second-order ODE method. Hence
both the VR and VS schemes are globally second-order convergent. The proof is given in
Appendix A. In the study of differential-algebraic equations, one frequently finds that rounding
errors or other errors introduced due to inexact solution of the nonlinear equations may lead

to instabilities in the numerical solution. We are currently investigating this question.

? For the construction of Hamiltonian underlying ODEs, see [16].
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6. Nonsymplectic Discretizations of Constrained Problems. The numerical solu-
tion of general differential-algebraic equations (DAEs), including problems of the form (3)—(5),
has been an important recent topic in scientific computing. General methods, as well as special-
ized schemes for solving the equations of motion of multibody mechanical systems are surveyed
in, e.g., [5, 9]. Among multistep methods, the methods based on backward differentiation
formulas (“BDF methods”) have been shown to converge with fixed and variable steps for con-
strained problems [17, 11]. Applying the k-step fixed-stepsize BDF formulas to (3)-(5) results

in equations:

k
(35) > iGnyi—i = hM 'pap
1=0
k
(36) Zaipn-}-l—i = _thv(qn—H)+hg/(Qn+1)t/\n+1
1=0
(37) 0 = 9g(¢nt1)

One step of this method requires substantially more computational work than VS or RATTLE,
since the method treats both g and V,V implicitly. On the other hand, more efficient, semi-
implicit implementations [9, 18] are in use in multibody dynamics. The BDF formulas are
known to be highly stable methods (they are suitable for “stiff” ordinary differential equations
[10]), and one expects some dissipation of energy when they are used. The BDF methods are
popular as solution methods for general systems of differential-algebraic equations, and they

form the basis for numerical integration in the research code DASSL.

7. Numerical Comparisons Among the Methods. We implemented VS and VR
iterations and the second-order BDF method (35)-(37) (with & = 2). The methods were
applied to a simple test problem consisting of a set of six nodes connected together by springs
with spring constant x as shown in Figure 1. The coordinates of the ¢’th node in the figure
are labelled (g2;—1,¢2i), and the corresponding momenta are (pg;—1,p2;). The problem was
simulated on the time interval [0,10] with various choices of the stepsize h. Although much

more complicated model problems should eventually be treated, particularly in conjunction
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with the evaluation of various implementation strategies, the simple problem does illuminate

important basic aspects of the methods discussed here.

Fi1G. 1. Test Problem.

The Lagrangian equations (in cartesian coordinates) describing the problem of Figure 1
are in the form (3)—(5) with ¢ and p taking values in R'?, M = Ij5 (the 12 x 12 identity),
V = 2¢'Kq, where

L 0 —I, 0 0
0 I, 0 -1 0
|- 0 2, 0 -L 0
K=rl o _5, 0o 25, 0 -I
0 0 -1, 0 I, 0
0 0 0 —I, 0 I

and

(1= @3)° + (g2 —qa)* =1

(g3 —¢5)° + (g2 — q6)* — 1

g(q) = 3 (g5 —q7)* + (g6 — qs)* — 1
(g7 — q9)* + (g3 — q10)* — 1
(99 — q11)* + (qio — ¢12)* — 1

[~}

7.1. Implementation. The efficient implementation of SHAKE or RATTLE-type con-
straints for large molecules requires that careful use be made of the available special (sparse)
structure present in the constraints of typical molecular problems. We outline the simplified
approach used here to obtain numerical comparisons of the underlying time-stepping schemes.

For the implementation of an implicit method, the first problem is to choose an explicit
predictor that provides an initial guess for an iterative solution of the nonlinear equations. In
our experiments, we used a quadratic interpolating polynomial passed through the previous

solution values as a predictor.
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The equations (15)—(18) can be rewritten as a nonlinear system for A,. We employed
an iteration equivalent to an approximate Newton iteration on this nonlinear system. As a
stopping criterion for the iteration, we have demanded that the change in the iterates and the
normed residual of g be smaller than a certain prescribed tolerance gtol in 2-norm. Note that
in order for VR or VS to be symplectic we must accurately solve the nonlinear equations.

In the case of VR, once ¢,41 and p, 41/ Pny1 is computed by solving another linear system.

7.2. Velocity-Level Constraints in SHAKE. We first investigated the behavior of
the residual of the velocity-level constraint ¢’(¢)p = 0 when the VS method is used (of course,
RATTLE satisfies this constraint to rounding error). Graphs of the velocity constraint residual
for VS with A = 0.01 are shown in Figure 2. The figure illustrates the fact that, although error
will be introduced in the velocity level when using SHAKE, these errors are not amplified from

step to step. (This fact can also be demonstrated analytically.)

101

velocity-level residual

104
0

FiGg. 2. Residual of the Velocity-Level Constraint: V.S Scheme.

7.3. Comparison of RATTLE and BDF(2). We next compared the behavior of the
VR and BDF methods. We computed the numerical solutions for various values of the stepsize,
and compared with a baseline solution computed with a much smaller stepsize than those used in

any of the other runs to obtain estimates for the numerical error. Figure 3, showing the endpoint
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numerical error (at ¢ = 10) versus stepsize in log-log scale, indicates the clear superiority of the
symplectic scheme in terms of accuracy for a given stepsize. In Figure 4 we have plotted the
endpoint absolute energy error vs. the stepsize used, again in log-log scale, showing an even

greater spread between the symplectic and nonsymplectic integrators.

10t ¢ .
o
N
100 &
E + o
+
o
<} 1L
o 10 E
.
o
N
102L o +BDF
oVR
o
104 103 102 101 100

FiGg. 3. Comparison of Numerical Error: VR vs. BDF.

100
101}
.
g 102} °
3 E .
% o
g 103} * 3
[ A +BDF
104}
E R oVR
105 104 103 102 10 100

FiGg. 4. Comparison of Absolute Energy Error: VR vs. BDF.

Finally, we considered the behavior over time of the energy error in VR and BDF(2)
discretizations with an identical stepsize of A = 0.01. In Figure 5, we see that, even on a

relatively long time interval of [0, 100], the energy for RATTLE is approximately conserved in
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comparison with BDF.

101

100

CoTTT T T

101§

VR
102

abs. energy error

103

104

105
0

10 20 30 40 50 60 70 80 920 100

timet

FiGg. 5. Conservation of Energy over Time: VR vs. BDF.

7.4. A Lennard-Jones Model Problem. To get a more realistic model for the molecu-
lar dynamics problem, we looked at a small “molecule” consisting of a planar constraint chain
of seven atoms in a Lennard-Jones (6-12) potential. Specifically, for two atoms at distance d,

the potential between them was
o(d) = .1(d™* = 2d7°)

The problem was used in [23] as a model for energy minimization. We started with an
initial configuration at the global minimum of potential and applied vertical initial velocities
of magnitude 0.25 in opposite directions at the ends of the chain. In this way, the linear
momentum of the molecule center of mass is zero, and the whole structure spins in place. There
are essentially two components of the motion: (1) a “rigid body” motion and (2) a vibration due
to the Lennard-Jones potential. We integrated using the VR and BDF(2) schemes on [0,200]
with a stepsize of h = .1 and a tolerance of 0.000001 for the nonlinear solver. Figure 6 compares
the motion of the first atom of the chain as computed by the two integrators. After a very short
interval, the BDF scheme has removed the vibrational components which are well resolved on

the entire interval by the VR method. The energies are compared in Figure 7.
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Fi1G. 6. BDF2 and RATTLE Motion of One Atom on the time interval [0,200].
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Fig. 7. Energy for BDF-2 and RATTLE Solutions.

For this example, we observed that the RATTLE scheme converged for larger stepsizes
than the BDF method. The damping capability of the BDF family of integrators is sometimes
exploited in order to “integrate over” fast stiff modes with large stepsizes, however, the artificial

dissipation that these methods introduce is frequently inappropriate to the physical nature of

the problem.

8. Conclusion. From our experience,
enough (gtol is sufficiently small), then VS and VR produce equivalent results, although VS
iterates do not satisfy the hidden constraints. Both methods will outperform BDF in terms of
computational efficiency. Since the V'S iteration can probably be implemented most efficiently

of all, one suspects that the ideal method consists of a sequence of VS steps followed by a VR

if the constraint relationships are solved accurately
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step only when output is desired.
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Appendix A. Proof of Global Convergence of SHAKE and RATTLE Before proceeding
with the proof of Theorem 5.1, consider the general unconstrained second-order system of

ordinary differential equations

p = o(q,p)
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with smooth ¢. These equations can be discretized by the following scheme
(38) Gnt1 = Gnt hppyi)e

h
(39) Pr41/2 = Pn-1/2 + §(¢(qn7pn—1/2) + qb(qnvpn-{—l/Z))

By substituting the true solution (i.e., ¢({,41) for ¢n,41, etc.) in (38) and expanding in
Taylor series, it is easy to see that (38)-(39) has a local error of O(h®). Standard arguments

yield second order global convergence (see, e.g., Hairer, Ngrsett and Wanner [14], Theorem 3.6).

Proof of Theorem 5.1:

Expand g around ¢ = ¢, and evaluate at ¢ = ¢,4+1 to get

1
(40) g(Qn—{—l) = g(qn) + g:z(qn-l-l - QTL) + 59//[(]71-}-1 —Qn,qn+1 — Qn]

where we have written g/, for ¢'(¢,).

Making use of the equations definining VS we may write:

InPrt1/2 = — 59" [Prt1/2: Prt1/2)

N | S

Next, introducing p,, 11/, from (13), we get an equation that can be solved for A,.

[ 5

1 _
(41) A= 13(909n) 1[—hg;pn_1/z

+h?g, Y,V (gn) — (h2/2)g”[pn+1/z,pn+1/z]}

Reintroducing this expression for A in (13), and simplifying somewhat, we arrive at equations

(42) qn+1 = gn ‘I’ hpn-}-l/?

(43) Pry1y2 = (I - Hn)pn—l/Q = h(I = H,)VV(gn)
h _

(44) —597’5(9;97’5) lg//[pn+1/27pn+1/2]

Now evaluate the second-order expansion of g at ¢,—; and use (12) at the previous step to get

n

, h
9pPrn-1/2 = 59 [pn—1/27pn—1/2]
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This leads, finally, to

(45) nt1 = qnt hpn-|—1/2
(46) Pryi/2 = P12 — MI —Hn)VeV(gn)

h -
_597/5(97/197/5) ! (g//[pn+1/27pn+1/2] + g//[pn—1/27pn—l/2])

We recognize (45)-(46) as nothing other than the discretization (38)-(39) applied to the under-

lying ODE (33)-(34). O
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