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Abstract Molecular dynamics typically incorporates a stochastic-dynamical device, a “ther-
mostat,” in order to drive the system to the Gibbs (canonical) distribution at a prescribed
temperature. When molecular dynamics is used to compute time-dependent properties, such
as autocorrelation functions or diffusion constants, at a given temperature, there is a conflict
between the need for the thermostat to perturb the time evolution of the system as little as
possible and the need to establish equilibrium rapidly. In this article we define a quantity
called the “efficiency” of a thermostat which relates the perturbation introduced by the ther-
mostat to the rate of convergence of average kinetic energy to its equilibrium value. We
show how to estimate this quantity analytically, carrying out the analysis for several ther-
mostats, including the Nosé-Hoover-Langevin thermostat due to Samoletov et al. (J. Stat.
Phys. 128:1321–1336, 2007) and a generalization of the “stochastic velocity rescaling”
method suggested by Bussi et al. (J. Chem. Phys. 126:014101, 2007). We find efficiency
improvements (proportional to the number of degrees of freedom) for the new schemes
compared to Langevin Dynamics. Numerical experiments are presented which precisely
confirm our theoretical estimates.

Keywords Molecular dynamics · Stochastic thermostats · Thermodynamic averages ·
Nosé-Hoover · Langevin dynamics · Stochastic velocity rescaling

1 Introduction

The question considered in this paper is how best to use molecular dynamics to compute
time-dependent properties (such as autocorrelation functions) when the temperature rather
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than the energy is specified. One approach is to perform simulations using straightforward
Hamiltonian dynamics, attempting to choose the energy of the system so that the tempera-
ture (as determined from the kinetic energy of the particles) has the desired value; this can
be difficult to achieve in practice for any individual trajectory, so one would typically need
to employ an ensemble of trajectories. Generating a good representative ensemble is itself
a challenging task, and microcanonical simulations typically are subject to energy drifts
which may distort the statistics [5, 6]. To help address these difficulties, as well as to reach
the Gibbs distribution more quickly in models with corrugated energy landscapes, various
methods (“thermostats”) have been devised in which some kind of perturbation is introduced
into the dynamics; this perturbation can be thought of as representing the effect of a heat bath
at a prescribed temperature. If the purpose is to overcome an inherent lack of ergodicity in
the molecular model in order to promote, say, more rapid sampling of configurational states,
then a large thermostatting perturbation may be needed. If, however, the goal is to calculate
time-dependent properties such as self-diffusion constants from molecular simulation, the
perturbation should be small enough so as not to affect seriously the dynamics of the system
on short times, while at the same time being able to rapidly drive the system into equilib-
rium with the thermostat, so as to give results that are effectively independent of the initial
conditions with a minimal investment in computing time. It is not obvious a priori that it is
possible to achieve both of these aims simultaneously, so that confidence in the validity of
temporal correlation functions computed from thermostatted simulations is often low [12,
21, 22]; nevertheless, these methods are frequently used in practice despite the lack of a
solid theoretical foundation (see e.g. [4] for a very recent example).

The purpose of the present paper is to put forward a quantitative criterion, which we term
the “efficiency,” for determining how well a given thermostatting method can satisfy the two
conflicting requirements. Our use of the term “efficiency” in this context is not related to
the concept of sampling efficiency [23], nor is it similar to the common usage in numerical
analysis which relates to accuracy achieved by a method for given computational work.
Instead, we use the term here to refer to the extent to which perturbations of microcanonical
dynamics associated to a thermostatting method are directly applied for the purpose at hand
(i.e. that of driving a given system into thermal equilibrium); an efficient method will make
relatively small perturbations to the dynamical system in achieving the target temperature.
Our use of the term efficiency is in some way similar to that of [8], where it relates to the
ability of a thermostat imposed only on the boundary of a molecular model to generate a
prescribed distribution in the interior.

A straightforward way of controlling the temperature in simulations is to model the
random interaction with the heat bath by a stochastic perturbing force. The simplest such
method is the so-called Langevin dynamics [7, 13], in which the modeled system is effec-
tively immersed in a fluid of much smaller and lighter Brownian particles which perturb
its motion. It is possible to give a rigorous analysis of the convergence to thermodynamic
equilibrium in Langevin dynamics [17].

An alternative approach was discussed in Samoletov et al. [20] which combines the ki-
netic energy control technique devised by S. Nosé and W. Hoover [9, 18] with a single
stochastic perturbation. We term this method the ‘Nosé-Hoover-Langevin thermostat’ ab-
breviated to NHL. Leimkuhler et al. [16] have demonstrated that this scheme is ergodic for
a harmonic system under a mild non-resonance assumption.

A different method of improving on the Langevin thermostat has been proposed by Bussi
et al. [1, 2]. They call their method stochastic velocity rescaling. Instead of using indepen-
dent random forces acting on all the degrees of freedom of the system, they use a single
random force which (like the deterministic force in Nosé-Hoover dynamics) acts so as to
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multiply all the velocities by the same factor at each time step. They give numerical re-
sults [1] indicating that (for a system of 108 particles) their modification of Hamiltonian
dynamics disturbs the motion of the system less than the corresponding Langevin dynamics
when the parameters are chosen so as to drive the system to equilibrium at the same rate.
Like the Nosé-Hoover thermostat, this is a ‘gentle’ thermostat in the sense that the perturb-
ing force acting on each particle in the system acts along the direction of motion of that
particle. Hoover [9] has argued that this is a desirable feature in a thermostat.

With the exception of Langevin dynamics, little is known about the theoretical rates
of convergence of these schemes to thermodynamic equilibrium. In this article we review
Langevin and Nosé-Hoover-Langevin dynamics, and describe a generalized stochastic ve-
locity rescaling method that includes as a special case the method of Bussi et al. [1, 2]. For
each method, we calculate the rate of convergence to equilibrium using certain approxima-
tions analogous to the constitutive relations used in hydrodynamics and continuum mechan-
ics; these give us estimates for the convergence of average kinetic energy to the prescribed
target temperature, and, in particular, the asymptotic convergence rates near equilibrium
conditions. In the course of this we also give the critical choice of damping coefficient for
Nosé-Hoover-Langevin dynamics which guarantees an optimal convergence behavior near
equilibrium. We next calculate, for each method, the rate of accumulation of perturbation er-
ror at small times by an exact method based on a Maclaurin expansion. On the principle that
the most efficient thermostat is the one that gives rise to the smallest cumulative deviation
from Hamiltonian dynamics during the time necessary to bring the system to equilibrium at
the thermostat temperature, we define the efficiency of a thermostat as the reciprocal of that
deviation. Using our analytical method, we find that, for systems with a large number (n) of
degrees of freedom, the NHL thermostat and the generalized stochastic velocity rescaling
thermostat are more efficient than Langevin dynamics, by a factor of order n.

2 Molecular Simulation Methods

2.1 Hamiltonian Dynamics and Phase-Space Averages

We consider a system obeying classical mechanics, with a Hamiltonian function of the form

H(p1, . . . , qn) :=
n∑

i=1

p2
i

2mi

+ V (q1, . . . qn), (1)

where n is the number of degrees of freedom, p1, . . . , pn are the momentum coordinates
and q1, . . . , qn are the position coordinates. The function V is the potential energy and mi

is the mass associated with the ith degree of freedom and is assumed to be constant. The
Hamiltonian equations of motion are:

dqi

dt
= ∂H

∂pi

,
dpi

dt
= −∂H

∂qi

(i = 1, . . . , n). (2)

For future reference, we define the kinetic energy

K := 1

2

n∑

i=1

pi

∂H

∂pi

=
n∑

i=1

p2
i

2mi

. (3)

The phase points (p1, . . . , qn) denoting the possible dynamical states of the system lie in
a 2n-dimensional ‘phase space’ � := Rn × Rn or (if the particles are confined in a periodic
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box of side �) Rn × (R/�Z)n. Points in phase space will sometimes be denoted x rather than
(p1, . . . , qn). The volume element in phase space will sometimes be denoted d2nx rather
than dp1 . . .dqn.

To model the randomness in the choice of the initial dynamical state and also (for the
stochastic thermostats) in the time evolution, we shall treat the time-dependent dynami-
cal state x(t) as a stochastic process—i.e. a family of random variables, parametrized by
the non-negative real variable t . Likewise, we treat the time-dependent positions and mo-
menta p1(t), . . . , qn(t) as stochastic processes. Associated with these stochastic processes
is a space � comprising all the possible trajectories (realizations) of the stochastic process,
and a probability measure on � describing the probabilities of the various events that can be
defined in terms of these trajectories. Expectations with respect to this probability measure
(which depends on the way the system or ensemble is started out) will be denoted by E{·}.

An important case arises when the system is started out by choosing the initial dynamical
state (p1(0), . . . , qn(0)) at random according to the Gibbs canonical distribution over �,
whose density is

ρeq(x) := 1

Z(T )
e−H(x)/kT (4)

where T is the temperature, k is Boltzmann’s constant and Z(T ) is the phase integral

Z(T ) :=
∫

�

e−H(x)/kT d2nx. (5)

For Hamiltonian dynamics and two of the three thermostats considered here, it turns out that
with this initial condition the probability distribution of the random variable x(t) ∈ � is also
canonical, for each positive value of t . The resulting stochastic process serves as a model for
thermal equilibrium at temperature T . Expectations with respect to the probability measure
of this stochastic process will be denoted by Eeq{·}.

In the following, we shall usually write the random variables p1(t), . . . , qn(t) more con-
cisely as p1, . . . , qn, while at the same time writing E as Et . Thus, Et {piqi} means the same
thing as E{pi(t)qi(t)}, and Et

eq{pi(0)pi} means the same as Eeq{pi(0)pi(t)}.

2.2 Langevin Dynamics

For the Langevin thermostat, a frictional term and a stochastic term are added to the equa-
tions of motion (2), so that they are replaced by the system of (Ito) stochastic differential
equations1

dqi = ∂H

∂pi

dt, (6)

dpi = −∂H

∂qi

dt − γpi dt + √
2γmikT dWi, (7)

where γ is a positive parameter measuring the strength of the coupling between the system
and the thermostat, and W1(t), . . . ,Wn(t) are n independent Wiener processes (Brownian
motions).

1For general information about stochastic differential equations, see Ref. [19].
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For each t , the joint probability density of the random variables p1(t), . . . , qn(t) will
be denoted by ρt (p1, . . . , qn). It satisfies the following Fokker-Planck equation (also
known [19] as Kolmogorov’s forward equation)

∂ρt

∂t
= −

∑

i

∂

∂qi

(
∂H

∂pi

ρt

)
+

∑

i

∂

∂pi

((
∂H

∂qi

+ γpi

)
ρt + γmikT

∂ρt

∂pi

)
. (8)

The Gibbs probability density defined in (4) is a stationary solution of (8).
Equation (8) is referred to as a “degenerate diffusion equation,” since the differential

operator on the right side is elliptic in the momentum variables but not the position vari-
ables. Nonetheless, it is possible to demonstrate [17] that this operator is hypoelliptic [10,
11], which implies regularity in C∞, uniqueness of the stationary measure, and therefore
ergodicity. Moreover, assuming that V (q1, . . . , qn) is smooth it is possible to demonstrate
exponentially rapid convergence to the canonical Gibbs distribution (4) [17].

2.3 Stochastic Velocity Rescaling Thermostats

In this method, the equation for dqi is again (6) but the equation for dpi is now (generalizing
the original proposal of Bussi et al. [1, 2])

dpi = −∂H

∂qi

dt − �(K)pi dt + √
2kT 	(K)pidW, (9)

where W(t) is a single Wiener process, 	 is an arbitrary positive-valued function and the
function � is defined by

�(K) := (2K − (1 + n)kT )	(K) − 2kT K
d	

dK
. (10)

This definition is chosen so as to make the Gibbs probability density ρeq a stationary solution
of the Fokker-Planck equation for the SDE system (6), (9). The original proposal of Bussi
et al. corresponds to the choice

	(K) = γ ′′

2K
, so that �(K) = (1 − (n − 1)kT/2K)γ ′′, (11)

in which γ ′′ is a positive constant (they call 1/2γ ′′ the ‘relaxation time’).
In this article we will assume the following regarding the function 	:

K	(K) is bounded as K → 0, (12)

	(K) grows at most polynomially as K → ∞. (13)

2.4 The Nosé-Hoover-Langevin Thermostat

The NHL thermostat combines a negative feedback control of the kinetic energy with a
stochastic perturbation. The SDE system for this thermostat, which involves an additional
stochastic process ξ(t), is

dqi = ∂H

∂pi

dt, dpi =
(

−∂H

∂qi

− ξpi

)
dt (i = 1, . . . , n), (14)

dξ = 1

μ
(2K − nkT )dt − γ ′ξdt +

√
2γ ′kT

μ
dW, (15)
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where γ ′ and μ are positive constants and W(t) is a single Wiener process.
It can be checked that the augmented Gibbs density

ρ ′
eq(x, ξ) := 1

Z(T )

√
μ

2πkT
e−H(x)/kT −μξ2/2kT (16)

is a stationary solution of the Fokker-Planck equation for the NHL system (14), (15). This
distribution therefore takes the place of the Gibbs canonical distribution in the description
of equilibrium for the NHL thermostat. It is known [16] that the scheme is ergodic for the
case of a harmonic system with a mild assumption on its spectrum. Averages of functions of
the phase variables with respect to the augmented density (16) are equivalent to canonical
phase space averages.

3 The Rate of Convergence to the Thermostat Temperature

The point of using any of these thermostats is to get from an arbitrary initial dynamical state
or probability distribution, which may have the wrong energy for the prescribed tempera-
ture T , to a state or probability distribution with the right energy. In this section we estimate
the length of time this takes, by estimating how long the energy takes to get from an arbi-
trary initial value to its equilibrium value at the thermostat temperature T . For simplicity the
calculations will be done for a system of particles all having the same mass mi ≡ m.

3.1 The Convergence Rate for Langevin Dynamics

Consider a system which is started in equilibrium at a given temperature T0 different from
the thermostat temperature T and then evolves according to Langevin dynamics; that is to
say, the initial phase point is chosen at random from the Gibbs distribution (4) with T = T0,
and the subsequent time evolution is given by the equations of the Langevin thermostat, (6)
and (7), with a value for T which is different from T0.

As a simple criterion for convergence to equilibrium with the thermostat we consider
the time evolution of the expectation of the energy, Et {H } where H is the random variable
defined in terms of p1, . . . , qn using the formula (1). By the Ito-Doeblin formula (Theo-
rems 4.1.2 and 4.2.1 in Ref. [19]), it follows from (6) and (7) that

dH =
∑

i

∂H

∂pi

(−γpi dt + √
2γmkT dWi

) + nkT γ dt. (17)

Taking the expectation of (17), dividing by dt and using the formula (3), we obtain

d

dt
Et {H } = γ [nkT − Et {2K}]. (18)

To use this differential equation we need a constitutive relation connecting, at any time t ,
Et {H } and Et {2K}. To formulate such a relation, we shall make the following assumption,
which has something in common with the constitutive relations used in hydrodynamics and
continuum mechanics:

Assumption 1 There is a time-dependent ‘empirical temperature’ θ(t) such that the expec-
tation at time t of any phase space function that is even in the momenta is approximately the
same as it would be in a canonical distribution at the temperature θ := θ(t).
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As a formula, this assumption asserts that there is a θ(t) such that, for all phase-space
functions f that are even in the momentum variables,

Et {f (p1, . . . , qn)} ≈ 1

Z(θ)

∫

�

d2nx f (x)e−H(x)/kθ , (19)

where

Z(θ) :=
∫

�

d2nx e−H(x)/kθ . (20)

In particular, taking f to be the kinetic energy, (19) gives

Et {K} = 1

2
nkθ. (21)

Exceptionally, we write this application of (19) as an exact equality, since it will be used as
our definition of θ. From this definition it follows that θ(0) = Et=0{2K}/nk = T0.

If instead we take f to be the total energy, (19) gives

Et {H } ≈ U(θ) := 1

Z(θ)

∫

�

d2nx H(x)e−H(x)/kθ . (22)

Using (21) and (22) we can bring (18) to the form

C(θ)
dθ

dt
= nkγ (T − θ), (23)

where C(θ) is the heat capacity at temperature θ , defined by

C(θ) := dU(θ)/dθ. (24)

It can be verified, using the definition of U in (22), that C(θ) is positive.
The differential equation (23) has an equilibrium point, obviously stable, at θ = T . An

estimate of the rate of convergence to this equilibrium point can be obtained by considering
the linearized version of (23), whose general solution is

θ = T + const × e−nkγ t/C(T ); (25)

thus we can estimate the rate of convergence to the thermostat temperature as nkγ /C(T ).

This is the convergence rate that has been entered into Table 1.

Table 1 Estimated rates of convergence to the thermostat temperature, rates of error accumulation, and
efficiencies for various thermostats

Thermostat Convergence rate Error (to lowest
order in t)

Efficiency

Langevin nkγ
C(T )

γ t nk
C(T )

≈ 1

Velocity rescaling 4
Eeq{K2	(K)}

T C(T )
2
n Eeq{K	(K)}t O(n)

VR with 	(K) = γ ′′
2K

nkγ ′′
C(T )

γ ′′
n t n2k

C(T )
≈ n

NHL
γ ′

crit
2 =

√
n2k2T
μC(T )

kT
2μ

t2 2n2k
C(T )

≈ 2n

(at critical damping)
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3.2 Convergence Rate for Stochastic Velocity Rescaling

The equations for this method are (6) and (9), with � defined by (10). The Ito-Doeblin
formula now gives

dH =
∑

i

∂H

∂pi

(−�(K)pi dt + √
2kT 	(K)pi dW

) + 2kT 	(K)K dt, (26)

so that

d

dt
Et {H } = Et {2K(kT 	(K) − �(K))}

= Et {2K[(2 + n)kT − 2K]	(K) + 2kT K	′(K)}, (27)

where 	′(K) := d	/dK .
According to Assumption 1 (19), we may approximate the left side of (27) by C(θ)dθ/dt

and the right side by its expectation under the Gibbs canonical measure at temperature θ .
The probability density for K under this measure is proportional to e−K/kθKn/2−1, so that
the expectation of the right-hand side of (27) is

1

ZK(θ)

∫ ∞

0
2K([(2 + n)kT − 2K]	(K) + 2kT K	′(K))e−K/kθKn/2−1 dK, (28)

where

ZK(θ) :=
∫ ∞

0
e−K/kθKn/2−1 dK. (29)

Assuming that 	(K) satisfies the conditions (12)–(13), partial integration gives

∫ ∞

0
K2	′(K)e−K/kθKn/2−1 dK

= −
∫ ∞

0
	(K)

d

dK

(
e−K/kθK2Kn/2−1

)
dK

= −
∫ ∞

0
	(K)e−K/kθ

(
− 1

kθ
Kn/2+1 +

(
1

2
n + 1

)
Kn/2

)
dK. (30)

With the help of this result the integral in (28) simplifies to

4

(
T

θ
− 1

)∫ ∞

0
	(K)e−K/kθKn/2+1 dK, (31)

so that our approximate version of (27) can be written

C(θ)
dθ

dt
≈ 4

(
T

θ
− 1

)∫ ∞
0 	(K)e−K/kθKn/2+1 dK

ZK(θ)

= 4

∫
dp1 . . .dqnK

2	(K)e−K/kθ

∫
dp1 . . .dqne−K/kθ

(
T

θ
− 1

)
. (32)
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Equation (32) has a stable equilibrium point at θ = T . The approximating linearized
equation is

C(T )
dθ

dt
= 4Eeq{K2	(K)}T − θ

T
, (33)

whose solutions converge to equilibrium at the rate 4Eeq{K2	(K)}/T C(T ). This is the rate
of convergence recorded in Table 1. For the choice 	(K) = γ ′′/2K used in (11), (32) takes
the particularly simple form

C(θ)
dθ

dt
≈ γ ′′nkθ

(
T

θ
− 1

)
, (34)

with convergence rate γ ′′nk/C(T ).

3.3 Convergence to the Thermostat Temperature for the NHL Thermostat

Again we consider a system whose initial dynamical state x(0) is chosen at random from
a canonical phase-space probability distribution at temperature T0, but now, in addition, an
arbitrary initial value for ξ(0) is prescribed, and the subsequent evolution is determined by
the NHL equations (14), (15). The Ito-Doeblin formula now gives

d

dt
Et {H } =

∑

i

Et

{
∂H

∂qi

dqi

dt
+ ∂H

∂pi

dpi

dt

}

= −
∑

i

Et

{
∂H

∂pi

piξ

}
= −Et {2Kξ}. (35)

The left-hand side can be approximated using Assumption 1, just as in (23) and (32), but
for the right-hand side we need an additional assumption:

Assumption 2 The random variables ξ(t) and K(t), which are obviously uncorrelated
when t = 0, remain uncorrelated for all t > 0:

Et {ξK} ≈ Et {ξ}Et{K}. (36)

A test of Assumptions 1 and 2, described later in the paper (see Figs. 1 and 2), indicates that
both of them are reasonably accurate approximations.

Using (22) to evaluate the left side of (35), and (36) followed by (21) for the right side,
we obtain

C(θ)
dθ

dt
≈ −Et {2K}Et {ξ} = −nkθEt {ξ}, (37)

where C(θ) is the heat capacity, defined in (24). To obtain information about Et {ξ} we take
the expectation of (15) and use the definition (21), obtaining

d

dt
Et {ξ} = 1

μ
Et {2K − nkT } − γ ′Et {ξ} = nk

μ
(θ − T ) − γ ′Et {ξ}. (38)

Equations (37) and (38) constitute a dynamical system for the two variables Et {ξ} and θ,

which can be studied using the phase plane method. This system has a unique equilibrium
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point at Et {ξ} = 0, θ(t) = T . The equilibrium point is stable; one way to see this is to
consider the Lyapunov function

(Et {ξ}, θ) := 1

2
(Et {ξ})2 +

∫ θ

T

C(θ1)(θ1 − T )

μθ1
dθ1, (39)

which is a measure of the distance of the phase point (Et {ξ}, θ) from the equilibrium point in
the phase plane. The time derivative of  equals −γ ′(Et {ξ})2, and hence  decreases mono-
tonically (strictly so, except at those instants when Et {ξ} = 0) and the phase point moves
closer and closer to the equilibrium point. A numerical study illustrating this approach to
equilibrium, and also indicating that the system (37), (38) gives a reasonably accurate ap-
proximation, is given in Sect. 6.2.2 below.

An analytic estimate of the rate of approach to equilibrium can be obtained by linearizing
the system (37), (38). After eliminating Et {ξ} the linearized equations reduce to

d2θ

dt2
+ γ ′ dθ

dt
+ n2k2T

μC(T )
(θ − T ) = 0. (40)

This is the equation of a damped harmonic oscillator. If γ ′ is less than the critical damping
value

γ ′
crit := 2

√
n2k2T

μC(T )
, (41)

the amplitude of the oscillations dies out exponentially like e−0.5γ ′t and therefore more
slowly than e−0.5γ ′

critt ; on the other hand if γ ′ > γ ′
crit there are no oscillations but the am-

plitude again dies out more slowly than e−0.5γ ′
critt . Thus, for a given γ ′

crit, the most rapid
convergence to the thermostat temperature is obtained by choosing γ ′ = γ ′

crit. This conver-
gence rate, 0.5γ ′

crit, has been entered in Table 1.
If γ ′ is chosen to be zero, which means using the deterministic Nosé-Hoover thermo-

stat [9] rather than NHL, our method predicts that the oscillations will continue for ever,
with whatever amplitude they were given initially. This possibility suggests that the deter-
ministic Nosé-Hoover thermostat may be non-ergodic. Other authors [3, 14, 15] have also
drawn attention to this possibility.

4 The Rate of Accumulation of the Thermostat Perturbation

In each of the thermostats described above at least one extra term is inserted into the Hamil-
tonian equation of motion dpi/dt = ∂H/∂qi. Over a period of time the extra term or terms
will take the motion of the perturbed system further and further away from the motion of the
Hamiltonian system it is meant to approximate, making the methods potentially unreliable
for the calculation of properties of the system, such as time-dependent correlation functions,
which are determined by the Hamiltonian trajectories.

In this section we estimate the rate at which the resulting perturbation of the motion
builds up over time, with a view to comparing this rate with the rate at which the thermostat
brings the system to thermal equilibrium, as calculated in the previous section. As a concrete
example, we shall calculate how much this perturbation affects the velocity autocorrelation
function (VAF) at small values of t .
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Assuming for simplicity that all the particles have the same mass m, the VAF can be
defined as

F(t) := 1

nmkT

n∑

i=1

Eeq{pi(0)pi(t)} = 1

nmkT

∑
Et

eq{pi(0)pi}. (42)

The prefactor 1/nmkT has been chosen so as to make

F(0) = 1. (43)

In this formula, the evolution of p is defined by Hamiltonian dynamics. We shall estimate
F(t) for small times using Maclaurin’s expansion, under the assumption that one of the
thermostatted dynamics has been used instead of Hamiltonian dynamics. For this it will
be necessary to calculate the first derivative dF/dt at t = 0 and, in the case of the NHL
thermostat, the second derivative as well.

4.1 Langevin Dynamics

Multiplying (7) by pi(0), taking the expectation with respect to the equilibrium measure and
dividing by dt we obtain, since pi(0) and dW(t) are statistically independent if t > 0,

Et
eq

{
pi(0)

dpi

dt

}
= Et

eq

{
pi(0)

[
−∂H

∂qi

− γpi

]}
(t > 0). (44)

Substituting into (42) and taking the limit t ↘ 0 we obtain

dFγ (t)

dt

∣∣∣∣
t=0+

= − γ

nmkT

n∑

i=1

Eeq{pi(0)2} = −γ (45)

so that (having regard to (43))

Fγ (t) = 1 − γ t + O(t2) (t > 0), (46)

where the dependence of F on the Langevin parameter γ is now shown explicitly. Since
Hamiltonian dynamics is the same as Langevin dynamics with γ = 0, the error in F(t) due
to the use of Langevin rather than Hamiltonian dynamics is

�LDF(t) := Fγ (t) − F0(t) = −γ t + O(t2) (t > 0). (47)

Thus for small t the magnitude of the error is γ t . This result has been entered into column 3
of Table 1.

4.2 Stochastic Velocity Rescaling

Multiplying (9) by pi(0), taking the equilibrium expectation and dividing by dt we obtain

Et
eq

{
pi(0)

dpi

dt

}
= Et

eq

{
pi(0)

[
−∂H

∂qi

− �(K)pi

]}
(t > 0). (48)
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Substituting into (42) and taking the limit t ↘ 0 we obtain the following equation for
F = F	:

dF	(t)

dt

∣∣∣∣
t=0+

= − 1

nmkT

n∑

i=1

Et=0+
eq {�(K)pi(0)2} = − 2

nkT
Eeq{K�(K)}. (49)

Using the definition (10) of � and then simplifying the resulting expression by means
of integration by parts, as in (30), it can be shown that Eeq{K�(K)} = kT Eeq{K	(K)};
therefore, since this thermostat reduces to Hamiltonian dynamics in the case 	 = 0, the
error in F(t) for small t is

�V RF(t) := F	 − F0 = − 2

n
Eeq{K	(K)}t + O(t2) (t > 0). (50)

The magnitude of this expression has been entered into column 3 of Table 1.

4.3 The NHL Thermostat

The error introduced by this thermostat depends on the initial value of ξ. In the following
calculation we assume that both this initial value and the initial dynamical state of the system
are chosen at random using the augmented Gibbs distribution defined in (16).

Multiplying the second equation in (14) by pi(0), taking the equilibrium expectation and
dividing by dt we obtain

Et
eq

{
pi(0)

dpi

dt

}
= Et

eq

{
pi(0)

[
−∂H

∂qi

− ξpi

]}
(t > 0). (51)

Substituting into (42) and taking the limit t ↘ 0 we find that F (for given μ) satisfies

dFμ(t)

dt

∣∣∣∣
t=0+

= − 1

nmkT

n∑

i=1

Eeq{ξ(0)pi(0)2} = 0 (52)

because the augmented Gibbs density (16) is an even function of ξ . Thus, the Maclaurin
series for F(t) begins with a quadratic term, for which we need the second derivative of
F(t) at t = 0.

The equation for dpi in (14) can be written dpi = yidt , where

yi := −∂H

∂qi

− ξpi. (53)

Using the Ito-Doeblin formula and then (14), (15) which define this thermostat, we obtain

dyi = −
∑

j

∂2H

∂qi∂qj

dqj − ξ dpi − pi dξ

= −
∑

j

∂2H

∂qi∂qj

∂H

∂pj

dt + ξ

(
∂H

∂qi

+ ξpi

)
dt

− pi

(
1

μ
(2K − nkT )dt − γ ′ξ dt +

√
2γ ′kT

μ
dW

)
(t > 0) (54)
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so that, omitting terms which turn out to be zero,

d2

dt2
Eeq{pi(0)pi(t)}

∣∣∣∣
t=0+

= d

dt
Eeq{pi(0)yi(t)}

∣∣∣∣
t=0+

= −Eeq

{
pi(0)

∑

j

∂2H

∂qi∂qj

∂H

∂pj

}∣∣∣∣
t=0+

+ Eeq{pi(0)2ξ(0)2}

− Eeq

{
pi(0)2 1

μ
(2K|t=0+ − nkT )

}

= −Eeq

{
pi(0)

∑

j

∂2H

∂qi∂qj

∂H

∂pj

}∣∣∣∣
t=0+

+ m(kT )2

μ
− 2m(kT )2

μ
. (55)

This thermostat reduces to Hamiltonian dynamics in the limit μ → ∞; hence, using Maclau-
rin’s expansion in the formula (42), we obtain (with the help of (43) and (52))

�NHLF(t) = Fμ(t) − F∞(t) = − 1

nmkT

n∑

i=1

m(kT )2

μ

t2

2
+ O(t3) = −kT

μ

t2

2
+ O(t3).

(56)

Thus, the error after a small time t is roughly − kT
2μ

t2. The magnitude of this expression has
been entered into column 3 of Table 1. It is very interesting to note that, at least for modest
times, the growth of perturbation depends only on the coupling parameter μ and not on γ ′,
unless these are directly coupled by the choice to work with critical damping.

5 The Efficiency of a Thermostat

Our analytic results are summarized in the first three columns of Table 1. To define a nu-
merical measure of the efficiency of a given thermostat, consider the amount of error that
accumulates during the time that the system is brought to equilibrium at the thermostat tem-
perature. The larger this amount of error, the less efficient the thermostat; so we define the
efficiency as the reciprocal of the amount of error that accumulates during that time. For
the Langevin and stochastic velocity rescaling thermostats, the error accumulates linearly,
and so we can take the efficiency to be the rate of convergence to equilibrium divided by
the rate of error accumulation. This ratio is the entry in the last column of Table 1. For the
NHL thermostat, the error accumulates quadratically. If the parameter γ ′ is given its optimal
value, i.e. the critical damping value shown in (41), the rate of decay to equilibrium is 0.5γ ′

crit

and so the time to reach equilibrium is of order 2/γ ′
crit = √

μC(T )/n2k2T . The amount of
relative error in F(t) that builds up in this time is, by the result (56), roughly

kT

μ

1

2

(
2

γcrit

)2

= kT

2μ

μC(T )

n2k2T
= C(T )

2n2k
. (57)

Our estimate of efficiency at critical damping is the reciprocal of this quantity, as shown in
Table 1.
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The entry in the final column is the reciprocal of the number obtained from the entry in
the previous column by setting t equal to the reciprocal of the entry in the first column (i.e.
to our estimate of the time taken for the system to come to equilibrium with the thermostat).
To estimate C(T ) we used Dulong and Petit’s experimental law C(T ) ≈ nk.

6 Numerical Experiments

In this section we compare our theoretical predictions about convergence and error build-up
with numerical simulation of a two-dimensional system comprising 108 particles in a square
periodic box interacting via the Lennard-Jones potential

V =
∑

ϕLJ(rij ) :=
∑

4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
, (58)

where ε, σ are positive parameters, rij denotes the distance between the ith and j th particle
and the sum goes over all pairs of particles. In theoretical work with the Lennard-Jones
potential it is customary to state the results in terms of the reduced temperature and reduced
density, defined (for a two-dimensional system) by

T ∗ := kT

ε
, ρ∗ := N

L2
σ 2,

where N is the number of particles and L is the side length of the periodic box. In our
simulations we used the values N = 108 and ρ∗ = 0.86, and various values for T ∗.

For Langevin dynamics we used a weak second-order method. The equations of the ve-
locity rescaling thermostat, (6) and (9), are more difficult to integrate accurately, because
of the multiplicative noise (i.e. the fact that the coefficient of dW(t) is not constant). We
first split the equations into the deterministic (Hamiltonian dynamics) and stochastic parts.
For the deterministic part, we used a Verlet method and for the stochastic part an Euler-
Muruyama method [19]. The choice (11) was used for the functions � and 	, with various
values of γ ′′. Note that for this particular choice, an exact solution of the stochastic part
might have been a better alternative, see [2].

For the NHL thermostat (14), (15) we used the following numerical integrator:

ξ̂ k+1/2 = e−γ ′�t/2ξk +
√

kT

μ
(1 − eγ ′�t )ηk,

pk+1/2 = pk − �t

2

∂V

∂q
(qk) − �t

2
ξ̂ k+1/2pk+1/2,

ξ k+1/2 = ξ̂ k+1/2 + �t
2K(pk+1/2) − nkT

μ
,

qk+1 = qk + �tm−1pk+1/2,

pk+1 = pk+1/2 − �t

2

∂V

∂q
(qk+1) − �t

2
ξk+1/2pk+1/2,

ξ k+1 = e−γ ′�t/2ξk+1/2 +
√

kT

μ
(1 − eγ ′�t )ζ k,
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Fig. 1 Computed values of
Et {H } plotted against those of θ ,
for the simulation of a
Lennard-Jones system as
described in the text. The axes
are labeled with values of the
corresponding ‘reduced’
quantities, i.e. H∗ := H/ε and
θ∗ := kθ/ε. Ensemble averaged
energies are shown by crosses at
reduced temperatures T ∗ = 0.6,
0.7, 0.8 (color online)

where ηk and ζ k are standard normal random variables. It can be shown that the above
method is second-order (in the weak sense). We used step size �t = 0.01 for most simu-
lations, but a smaller stepsize (�t = 0.001) was needed to examine the error growth in the
autocorrelation functions using the two gentle thermostats.

6.1 Testing the Assumptions Used in Sect. 3

The theory of convergence to the thermostat temperature presented in Sect. 3 depends on As-
sumptions 1 and 2. We checked the validity of these assumptions using a sample of 10,000
trajectories calculated with the NHL integrator described above. The initial states of the
system were chosen at random using the Gibbs probability distribution (4) at (reduced) tem-
perature T ∗

0 = 0.5. The initial value of ξ was 0 for all trajectories. The reduced temperature
of the thermostat was T ∗ = 1.

Assumption 1 implies (see (22)) that the graph of Et {H } against θ should be the same as
the graph of the thermodynamic internal energy U(T ) against temperature T , whose slope is
equal to the heat capacity. To test this, we computed estimates of Et {H } and θ by averaging
H and 2K/nk over the 10,000 trajectories at each time step during the evolution until the
empirical reduced temperature θ∗ := kθ/ε reached the value 0.9. The results, plotted in
Fig. 1, show Et {H } varying linearly with θ . Three points from the graph of U against T ∗,
obtained from simulations using the Gibbs equilibrium ensemble, are shown on the same
diagram; the fact that they lie close to the graph of Et {H } against θ provides evidence
supporting Assumption 1.

A separate calculation of the heat capacity, using the Gibbs fluctuation formula C(T ) =
dU(T )/dT = (1/kT 2)Eeq((H − Eeq(H))2) gave the values C(T ) = 209.0, 208.4, 211.4 at
reduced temperatures T ∗ = 0.6, 0.7, 0.8. As predicted by Assumption 1, these numbers
agree approximately with the slope of the graph, which is about 200.

Assumption 2 asserts that in the NHL thermostat the random variables ξ and K are
uncorrelated (i.e. that Et {ξK} = Et {ξ}Et {K}) for all t . Using the same sample of trajectories
as in the previous test, we estimated the relevant expectations as the sample means of ξK, ξ

and K at a succession of times t . The estimates of Et {ξK} and Et {K}Et {ξ} are plotted
against t in Fig. 2. The close agreement of the two curves indicates that Assumption 2 is a
good approximation.
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Fig. 2 Computed estimates of
Et {ξK} and of Et {ξ }Et {K} (in
reduced units), plotted against
time. As predicted by
Assumption 2, the two curves are
almost identical (color online)

6.2 Convergence to the Thermostat Temperature

To test the conclusions about convergence rates reached in Sect. 3, we used some new sam-
ples of 10,000 trajectories (still for the 108-particle Lennard-Jones system). For each sample
the initial states were chosen at random using the Gibbs probability distribution (4) at (re-
duced) temperature T ∗

0 = 1 and the temperature of the thermostat was T ∗ = 0.7, but differ-
ent thermostats and different values for the parameters γ , etc., were used for the subsequent
evolution.

6.2.1 Langevin and Velocity Rescaling Thermostats

According to the theory in Sect. 3, both Langevin and the stochastic velocity rescaling
method give exponential decay to equilibrium with the rates given in Table 1. We tested this
prediction for the Langevin thermostat with two samples of 10,000 trajectories using two
different values of γ , computing the empirical temperature θ at various values of t as the
sample mean of 2K/nk and comparing with the theoretical prediction θ∗(t) = 0.7+0.3e−γ t

given in (25). The results, shown in Fig. 3, show that the calculated results are quite well
represented by the theoretical curve. Figure 3 also shows the results of a similar test of the
velocity rescaling thermostat, using the formula (11) for 	(K) with two different values
for γ ′′; again the theory agrees quite well with the simulation results.

6.2.2 The NHL Thermostat

In the case of the NHL thermostat, the approach to equilibrium is described in Sect. 3 by
the second-order system (37), (38) and therefore, according to the theory, neither of the
variables θ,Et {H } decays as a simple exponential to its equilibrium value, even in the linear
approximation. The best theoretical prediction about the decay of θ to its equilibrium value
is obtained by solving the nonlinear equations (37), (38) numerically. Figure 4 shows such
a prediction compared with values for θ obtained by averaging over 10,000 trajectories.

Since the system of differential equations (37), (38) describing the approach to equi-
librium is now of second order, we also compared the phase portrait of that system—i.e.
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Fig. 3 Relaxation of the
empirical temperature θ

calculated as the mean of
2K/(nk) over a sample of 10,000
trajectories, both for the
Langevin thermostat and the
stochastic velocity rescaling
thermostat (VR). The graph
confirms that θ approaches the
target temperature with
exponential rate γ for the
Langevin thermostat and γ ′′ for
velocity rescaling (color online)

Fig. 4 Comparison of the
relaxation of θ , obtained as the
mean of 2K/nk over a sample of
10,000 NHL trajectories, with θ̂ ,
the numerical solution of the
nonlinear system (37), (38) (color
online)

the trajectory of a point in the plane with coordinates (Et {ξ}, θ) computed from the second-
order system—with the phase portrait of the sample means of ξ , θ at a succession of times t .
The results are shown in Fig. 5 and again the agreement is quite good.

6.3 Growth of Perturbations

We use the velocity autocorrelation function (VAF) to quantify the disturbance of the Hamil-
tonian dynamics. Figures 6, 7 show the errors FLD −F and FNHL −F against time. To calcu-
late these errors, we first set up an ensemble of N = 100,000 equilibrated initial conditions
x(i)(0), i = 1, . . . ,N at temperature T ∗ = 0.7. Next we computed F(t), FLD(t),FNHL(t)

and FV R(t) by ensemble averaging; computing the evolution x(i)(t) using Hamiltonian dy-
namics, Langevin dynamics, NHL dynamics and stochastic velocity rescaling (VR) dynam-



938 B. Leimkuhler et al.

Fig. 5 Comparison of the curve
(Et {ξ }, θ) obtained as the means
of 2K/nk and ξ over a sample of
10,000 NHL trajectories, with the
phase portrait of the nonlinear
system (37), (38) (color online)

Fig. 6 The graph shows the
computed perturbation in the
VAF by Langevin dynamics (LD)
for the 108 atom Lennard-Jones
system, which clearly grows
linearly at first (like −γ t ), as
anticipated (see Sect. 4.1) (color
online)

ics respectively and then approximating the VAFs by

F(t) ≈ 1

NmnkT

N∑

i=1

n∑

j=1

p
(i)
j (0)p

(i)
j (t),

for a system of equal masses mj ≡ m. When Langevin dynamics is used (Fig. 6) we see that
the error in the VAF grows linearly at first, the slope of the graph being the negative of the
coupling coefficient γ which is also, in this case, the convergence rate. On the other hand
for NHL (Fig. 7), the error grows quadratically at first. Hence even for fast convergence rate
(i.e. large γ ′) the VAF calculated using the NHL method is much more accurate than that
given by Langevin dynamics. Note the dramatic difference in scale between the perturbation
observed here and that shown for Langevin dynamics in Fig. 6.

We also examined the growth of the error in the velocity autocorrelation function for
the stochastic velocity rescaling method. We found it more challenging to verify the linear
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Fig. 7 For small times, the
developing perturbation in the
VAF by Nosé-Hoover-Langevin
(applied to the 108 atom system)
is well approximated by the
quadratic derived in Sect. 4.3 (as
− kT

2μ
t2) (color online)

Fig. 8 The early evolution of the
perturbation of the stochastic
velocity rescaling thermostat for
the 108 atom Lennard-Jones
system. The calculation is
impeded by the presence of
multiplicative noise (color
online)

growth estimated in Sect. 4.2 in a Lennard-Jones model, probably because the coefficient of
linear growth is very small and the presence of multiplicative noise complicates the numer-
ical calculation. (As mentioned previously, Bussi et al. [2] used an exact solution available
for their specific choice of 	 which likely improves the behavior of the scheme.)

The result of our simulation is shown in Fig. 8. When we re-ran the calculation using
a simple two degree of freedom reduced Lennard Jones model with potential U(q1, q2) =
ϕLJ(2q1) + 2ϕLJ(

√
q2

1 + q2
2 ), a smaller stepsize, and computing more samples, the linear

growth of VAF perturbation proved to be more easily verified, with the result shown in
Fig. 9.
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Fig. 9 The VAF perturbation for
the stochastic velocity rescaling
thermostat using a simple
reduced 2-body Lennard-Jones
model, on a short time interval
(color online)

6.4 Behavior of the Nosé-Hoover Langevin Thermostat on Longer Time Intervals

In our analysis we have relied on an expansion of the error in the velocity autocorrelation
function which is only valid for small times; this is enough to distinguish the methods clearly
in terms of their relative efficiencies, but it is interesting to ask if the same behavior carries
over in practice to calculations of correlation functions on longer time intervals. To examine
this question, we compared the errors in the velocity autocorrelation function computed
using the Langevin and NHL methods. As determined analytically in Sect. 3 and numerically
verified above, the rates of convergence of these methods are γ and γ ′/2, respectively, where
γ and γ ′ are the friction coefficients employed in the respective methods, as long as we
remain below critical dampling. We solved the Lennard-Jones system of 108 atoms using
the two methods, and using a coefficient for NHL which was twice that used for Langevin
dynamics, in order to match the convergence rates; with the value μ = 1 used here we were
well below the critical damping threshold for NHL. Then we graphed the error in velocity
autocorrelation functions for the different schemes. The results are shown in Fig. 10. This
simulation demonstrates that the NHL method appears to give much smaller error in velocity
autocorrelation function than does Langevin dynamics, when the collision parameters of
NHL and Langevin dynamics are chosen in order to give matching kinetic convergence
rates. Moreover, the graph in Fig. 10 confirms the observation made in Sect. 4 that the
perturbation of the velocity autocorrelation function in NHL is independent of γ ′ for short
times (the γ ′ = 2 and γ ′ = 10 NHL curves appear to directly coincide in the early stages).

7 Conclusions

In this article we have compared several methods for temperature control in molecular sim-
ulation in terms of their efficiencies. The efficiency is defined as the reciprocal of the magni-
tude of the perturbation of the velocity autocorrelation function incurred during the charac-
teristic time it takes for the kinetic energy to converge to its equilibrium average. We obtain
the convergence rate by an approximate treatment of the expectations of the stochastic dif-
ferential equations describing the thermostat. An approximation to the growth rate of the
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Fig. 10 Errors in velocity
autocorrelation functions using
Langevin and NHL dynamics,
coefficients of each method
chosen to give matching
convergence rate of kinetic
energy. Simulations for
convergence rates of r = 1 and
r = 5 are shown for each method
(color online)

perturbations is calculated by means of a Maclaurin expansion of the velocity autocorrela-
tion function, derived from the stochastic differential equations. We find that for systems
with n degrees of freedom, the Nosé-Hoover-Langevin thermostat and the stochastic veloc-
ity rescaling method both are order n times more efficient than Langevin dynamics in the
sense defined here. Where sampling trajectories are to be used for the computation of aver-
aged dynamics (e.g. velocity autocorrelation functions), or consequent calculations such as
diffusion rates or stress tensors, there would appear to be a clear advantage to using one of
the “gentle” thermostats described here.

In comparing the Nosé-Hoover Langevin and Bussi-Parinello thermostats, we believe
that there are certain advantages to using the former method. First, in the NHL method, the
noise enters additively. It is well known that this simplifies both the analysis of the stochastic
differential equations and the implementation of accurate numerical methods. Second, there
are some rigorous (for special cases) analytical results concerning the ergodicity of the NHL
method based on hypoellipticity [16], and similar results have not yet been established for
stochastic velocity rescaling.
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