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We consider numerical methods for thermodynamic sampling, i.e., computing sequences of points dis-
tributed according to the Gibbs–Boltzmann distribution, using Langevin dynamics and overdamped
Langevin dynamics (Brownian dynamics). A wide variety of numerical methods for Langevin dynamics
may be constructed based on splitting the stochastic differential equations into various component parts,
each of which may be propagated exactly in the sense of distributions. Each such method may be viewed
as generating samples according to an associated invariant measure that differs from the exact canonical
invariant measure by a stepsize-dependent perturbation. We provide error estimates à la Talay–Tubaro on
the invariant distribution for small stepsize, and compare the sampling bias obtained for various choices
of the splitting method. We further investigate the overdamped limit and apply the methods in the context
of driven systems where the goal is sampling with respect to a nonequilibrium steady state. Our analyses
are illustrated by numerical experiments.
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1. Introduction

A fundamental purpose of molecular simulation is the computation of macroscopic quantities, typically
through averages of functions of the variables of the system with respect to a given probability mea-
sure μwhich defines the macroscopic state of the system. We consider systems described by a separable
Hamiltonian

H(q, p)= V(q)+ 1
2 pTM −1p, (1.1)

where q = (q1, . . . , qN ) and p = (p1, . . . , pN ), respectively, are the vectors of positions and momenta
of N particles in dimension d, V is a potential energy function and M is a positive definite mass matrix,
typically a diagonal matrix.

The Hamiltonian (1.1) represents a fully classical molecular dynamics model. For instance, a fluid of
N argon atoms is well described by pairwise interactions among the nuclei, where the potential V(q)=∑

1�i<j�N v(|qi − qj|). The distance-based potential v(r)may be fitted to Buckingham or Lennard–Jones
forms (for instance, see Allen & Tildesley, 1989 or Frenkel & Smit, 2001). These short-ranged potentials

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



14 B. LEIMKUHLER ET AL.

model van der Waals-type interactions including both Pauli repulsion (the inability of the populated
electron shells to interpenetrate), and dispersion due to temporary dipoles forming in the charge clouds
surrounding the nuclei. In more complicated molecular systems, other potential energy functions are
used to capture local covalent bond structure and Coulombic interactions due to charges on the atoms.
Coarse-grained classical models may amalgamate several degrees of freedom, as for example when
a molecule is replaced by a rigid body description. Classical molecular dynamics models are now a
standard and widespread tool in almost every field of science and engineering. For example, see Schulz
et al. (2004) for some applications in engineering, Durrant & McCammon (2011) for a discussion of the
use of molecular dynamics in drug discovery, and see also the motivation provided in classical textbooks
on molecular simulation such as Allen & Tildesley (1989), Frenkel & Smit (2001), Schlick (2002) and
Tuckerman (2010).

In the most common setting, the probability measure μ with respect to which averages are com-
puted corresponds to the canonical ensemble. Its distribution is defined by the Boltzmann–Gibbs den-
sity, which models the configurations of a conservative system in contact with a heat bath at fixed
temperature T :

μ(dq dp)= Z−1 e−βH(q,p) dq dp, (1.2)

where β−1 = kBT with kB Boltzmann’s constant and Z is a normalization constant, ensuring that the
integral of μ over the entirety of phase space is unity.

Molecular dynamics can be used for the study of a wide range of thermodynamic and structural prop-
erties. Typically, observables are chosen which capture the features of interest and numerical studies are
aimed at computing the averages of these observables accurately. For instance, the average pressure in
a three-dimensional fluid such as liquid argon is obtained by computing P = Eμ(ψ), the expectation of
an observable ψ with respect to the canonical measure μ, where the pressure observable ψ is defined by

ψ(q, p)= 1

3V

(
pTM −1p −

N∑
i=1

qi · ∇qi V(q)

)
,

V being the physical volume of the box occupied by the fluid. By studying the variation in pressure with
changes in a thermodynamic parameter (temperature or density), one may obtain part of the phase dia-
gram of the material. Other observables may be used to model the determination of molecular form
(shape and size) or structural rearrangement under different ambient conditions. It is, for instance,
increasingly common to use molecular dynamics in biology to reveal allosteric mechanisms related to
protein function or drug binding; in such cases, the observable may measure the distance between two
particular groups of atoms or their relative alignment; see Durrant & McCammon (2011) for examples
and further references contained therein.

Numerically, the high-dimensional averages with respect to μ are often approximated as ergodic
averages along discrete stochastic paths (Markov chains) constructed through numerical solution of
certain stochastic differential equations (SDEs). There are two principal sources of approximation error
in the computation of average properties such as Eμ(ψ): (i) systematic bias (or perfect sampling bias)
related to the use of a discretization method for the SDEs (and usually proportional to a power of the
integration stepsizeΔt), and (ii) statistical errors, due to the finite lengths of the sampling paths involved
and the underlying variance of the random variables; see the presentation in Lelièvre et al. (2010,
Section 2.3.1). In this article, we are concerned with the systematic bias, specifically the systematic bias
in long-term simulation, i.e., with respect to the invariant (or nonequilibrium steady-state) distribution.
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One of the most popular choices of the SDE system for sampling purposes is Langevin dynamics,
which is given by: ⎧⎨

⎩
dqt = M −1pt dt,

dpt = −∇V(qt) dt − γM −1pt dt +
√

2γ

β
dWt,

(1.3)

where dWt is a standard dN-dimensional Wiener process. The friction intensity γ > 0 is a free parameter
which may be adjusted to enhance sampling efficiency. Under suitable conditions, the dynamics (1.3)
is ergodic for the Boltzmann–Gibbs distribution (see, for instance, Mattingly et al., 2002; Talay, 2002;
Cancès et al., 2007 and references therein).

We will also be interested in nonequilibrium situations where a given system is subject to noncon-
servative driving and dissipative perturbations. In this case, the averages may be taken with respect to a
stationary distribution which has no simple functional form. The simulation of nonequilibrium systems
in their steady states is one popular way to compute transport coefficients such as the thermal conduc-
tivity or the shear viscosity, by computing the linear response of an appropriate average property (see,
for instance, Evans & Morriss, 2008; Tuckerman, 2010). We discuss a specific example in Section 3:
the computation of the mobility of a particle, which measures the tendency of the particle to flow in the
direction of an external forcing. The mobility is related to the self-diffusion through Einstein’s relation
(see (3.6)).

The aim of this work is to provide a numerical analysis of the perfect sampling bias in Langevin
dynamics arising from numerical schemes obtained by a splitting strategy, building on studies such
as Talay (2002) or Bou-Rabee & Owhadi (2010), and clarifying the sampling properties of recently
proposed schemes (see Skeel & Izaguirre, 2002; Bussi & Parrinello, 2007; Melchionna, 2007; Thalmann
& Farago, 2007; Leimkuhler & Matthews, 2013a). Of particular interest is the behaviour of methods
in the overdamped limit γ → +∞ and variations of Langevin dynamics incorporating nonequilibrium
forcings such as the addition of nongradient forces (in which case the invariant measure is unknown).
The idea behind splitting schemes for SDEs is to decompose the generator of the dynamics into a sum
of generators associated with dynamics which are analytically integrable, or at least very simple to
integrate. We refer to the individual splitting terms of the dynamics as ‘elementary dynamics’ in the
sequel. One example in the context of Langevin dynamics is the splitting scheme based on a symplectic
integration of the Hamiltonian part of the dynamics combined with an exact treatment of the fluctuation–
dissipation part. Such methods are more convenient to implement in molecular simulation codes than
the implicit schemes proposed in Talay (2002) or Mattingly et al. (2002), and are also efficient in
practice (see Leimkuhler & Matthews, 2013b). Some essential elements of the numerical analysis on
the accuracy of such splitting schemes have been provided in Bou-Rabee & Owhadi (2010).

We focus in this article on the case where the position space is compact (e.g., a torus), since this is
most relevant from the point of view of applications in condensed matter physics and biology, where
periodic boundary conditions are typically used. This assumption simplifies the treatment of the Fokker–
Planck operator associated to Langevin dynamics, and, with additional smoothness assumptions on the
potential energy function, ensures regularity properties, discrete spectrum and spectral gap. In particular,
(1.2) is the unique invariant probability measure of the Langevin process. We assume for simplicity that
the positions belong to the torus M= (LT)dN , where L> 0 denotes the size of the simulation cell, and
denote by E =M × R

dN the state space of the system, i.e., the set of all admissible configurations (q, p).
Let us emphasize that we expect our results to hold for unbounded position spaces, under

appropriate assumptions on the potential energy function. Our proofs may, however, require nontriv-
ial modifications, using in particular the tools and the results from Mattingly et al. (2002), Talay (2002),
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Bou-Rabee & Owhadi (2010) and Kopec (2013). Generalizations to other dynamics similar to the
Langevin dynamics such as Generalized Langevin Dynamics (see Mori, 1965; Zwanzig, 1973), Dissi-
pative Particle Dynamics (see Hoogerbrugge & Koelman, 1992; Espanol & Warren, 1995) or Langevin–
Nosé-Hoover-Langevin dynamics (see Samoletov et al., 2007; Leimkuhler et al., 2009) are also pos-
sible, although a rigorous extension would require substantial work in view of the estimates needed
involving the generator of the dynamics, for instance (see the discussion in Remark 4.1).

In practice, since Langevin dynamics is discretized, averages computed along a single trajectory
converge to averages with respect to a measure μγ ,Δt, which is an approximation to μ in the sense that
there exists a function fα,γ for which∫

E
ψ(q, p) μγ ,Δt(dq dp)=

∫
E
ψ(q, p) μ(dq dp)+Δtα

∫
E
ψ(q, p)fα,γ (q, p) μ(dq dp)+ O(Δtα+1);

(1.4)
see Section 2.4 for precise statements. Of course, the momenta are usually trivial to sample since they
are distributed according to a Gaussian measure. The primary issue is therefore to sample positions
according to the marginal of the canonical measure:

μ(dq)= Z̃−1 e−βV(q) dq. (1.5)

Denoting by μγ ,Δt(dq) the marginal of the invariant measure for the numerical scheme in the position
variables, and by

(πϕ)(q)=
∫

RdN

ϕ(q, p) κ(dp), κ(dp)=
(

2π

β

)−dN/2 √
det(M ) exp

(
−βpTM −1p

2

)
dp, (1.6)

the partial average of a function ϕ with respect to the momentum variable, the error estimate (1.4)
becomes, for observables which depend only on the position variable,∫

M
ψ(q) μγ ,Δt(dq)=

∫
M
ψ(q) μ(dq)+Δtα

∫
M
ψ(q)(π fα,γ )(q) μ(dq)+ O(Δtα+1).

Let us conclude this introduction by noting that alternative sampling strategies are available: the bias
in the invariant measure sampled by discretization of Langevin dynamics could in principle be elimi-
nated by employing a Metropolis–Hastings procedure (see Metropolis et al., 1953; Hastings, 1970 and
the discussion in Lelièvre et al., 2010, Section 2.2). Another advantage of superimposing a Metropolis–
Hastings procedure upon a discretization of the Langevin dynamics is that it stabilizes the numerical
scheme even for forces −∇V which are not globally Lipschitz. The numerical analysis of Langevin-
based Metropolis integrators has been performed in Bou-Rabee & Vanden-Eijnden (2009) and Bou-
Rabee & Vanden-Eijnden (2012), where strong error estimates are provided. On the other hand, it is
not always possible or desirable to use a Metropolis correction. First, the average acceptance proba-
bility in the Metropolis step for Langevin-like dynamics in general decreases exponentially with the
dimension of the system for a fixed timestep (see, for instance, Kennedy & Pendleton, 1991). In fact,
the timestep should be reduced as some inverse power of the system size in order to maintain a constant
acceptance rate (see the recent works on Metropolization of Hamiltonian dynamics by Beskos et al.,
2013, following the strategy pioneered in Roberts et al., 1997 and Roberts & Rosenthal, 1998). There
are ways to limit the decrease of the ratio, by either changing the dynamics or the measure used to
compute the Metropolis ratio (see, for instance, Izaguirre & Hampton, 2004 in the context of Hamilto-
nian dynamics), or by evolving only parts of the system (see Bou-Rabee & Vanden-Eijnden, 2012). The
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latter strategy may, however, complicate the implementation of parallel algorithms for the simulation
of very large systems, especially if long-range potentials are used (as acknowledged in Bou-Rabee &
Vanden-Eijnden, 2012, Remark 2.5). This may be a reason why Metropolis corrections are not often
implemented in popular molecular dynamics packages such as NAMD. Secondly, the variance of the
computed averages may increase since rejections occur, and the numerical trajectory is therefore more
correlated in general than for rejection-free dynamics. Lastly, the Metropolis procedure requires that
the invariant measure of the system be known. This is the case for equilibrium systems, but no longer
is the case for nonequilibrium systems subjected to external forcings such as a temperature gradient or
a nongradient force (this is the framework considered in Section 3 of this article; see, for instance, the
dynamics (3.1)).

Summary of the results and organization of the paper

We focus in this article on first- and second-order splitting schemes, relying on Lie–Trotter decomposi-
tions of the evolution. This restriction is motivated both by pedagogical purposes and by the dominant
role in applications played by second-order splitting schemes. Let us, however, emphasize that most of
our results could, in principle, be extended to higher-order decompositions.

Results corresponding to discretizations of the equilibrium Langevin dynamics and computation of
static average properties are gathered in Section 2, while nonequilibrium systems and the computa-
tion of transport properties are discussed in Section 3 (relying on the computation of the mobility or
autodiffusion coefficient as an illustration). The proofs of all our results can be found in Section 4.

Let us now highlight some of our contributions.

• In the equilibrium setting, we rigorously ground in Section 2.4 the results presented in Leimkuh-
ler & Matthews (2013a), giving the leading-order correction to the invariant measure with respect
to Δt for general splitting schemes, via a Talay–Tubaro expansion (see Talay & Tubaro, 1990). We
carefully study all possible splitting schemes, taking advantage of what we call the ‘TU lemma’
(Lemma 2.12) to relate invariant measures of various splitting schemes where the elementary
dynamics are integrated in different orders. From a technical viewpoint, our proofs are a variation
on the standard way of establishing similar results, since we use the specific structure of splitting
schemes to conveniently write evolution operators as compositions of the semigroups of the elemen-
tary dynamics (working at the level of generators, as in Debussche & Faou, 2012; see also Mattingly
et al., 2010 for a related approach based on solution of appropriate Poisson equations). The structure
of the proof is highlighted in Section 4.4; see Remark 4.1.

• We show in Section 2.5 how the leading-order correction to equilibrium averages can be estimated
on-the-fly by approximating a time-integrated correlation function. This can be seen as a practi-
cal way of numerically solving a Poisson equation (a standard way of proceeding when studying
the linear response of nonequilibrium systems) and is an alternative to Romberg extrapolation to
eliminate the leading-order correction as done in Talay & Tubaro (1990).

• We carefully study the overdamped regime γ → +∞ in Section 2.6, making use in particular of
uniform resolvent estimates obtained in Theorem 2.5 owing to a uniform hypocoercivity property.

• We provide error estimates for the computation of transport coefficients, by assessing the bias arising
in the numerical discretization of either: (i) the computation of integrated time-correlation func-
tions expressing transport coefficients via Green–Kubo formulae; or (ii) ergodic averages of steady-
state nonequilibrium dynamics, where the equilibrium evolution (1.3) is perturbed by a nongradient
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force and the transport coefficient is extracted from the linear response of some quantity of interest
(see Section 3). The latter approach is illustrated by the study of the mobility, which measures the
response in the average velocity arising from a constant external force exerted on the system. We
also study the consistency of the numerical estimations in the overdamped limit.

Some numerical simulations are provided to illustrate the most important results (see Sections 2.5.3
and 3.3).

2. Error estimates for the invariant measure for equilibrium dynamics

We start by giving some properties of Langevin dynamics in Section 2.1 (most results are well-known,
except for the material on the overdamped limit γ → +∞ presented in Section 2.1.3). The numeri-
cal schemes we consider are then described in Section 2.2, their ergodic properties being discussed in
Section 2.3. Error estimates for the invariant measure are provided in Section 2.4. We then show in
Section 2.5 how to estimate the leading-order correction term through an appropriate integrated cor-
relation function. An important side result of this section is the development of error estimates for
Green–Kubo-type formulas. Finally, we study the errors on the invariant measures in the overdamped
limit in Section 2.6. Let us emphasize that we will make use of the following assumption throughout
this work.

Assumption 2.1 The potential V belongs to C∞(M, R).

The above assumption is quite restrictive since typical potentials used in molecular simulation, such
as the Lennard–Jones potential, have singularities. Although ergodicity for Langevin dynamics with
singular potentials has been recently proved in Conrad & Grothaus (2010), there are still many issues
with singular potentials, including the existence and uniqueness of an invariant measure for numerical
schemes (see Mattingly et al., 2002), and the derivation of appropriate bounds or estimates on the resol-
vent of the generator of the Langevin dynamics (all the results presented in Section 2.1.1 are obtained
under the assumption of smooth potentials). Since the latter estimates are fundamental for our work,
we have to restrict ourselves to smooth potentials. Of course, from a more practical viewpoint, it could
also be argued that the potential energy function could be smoothed out by appropriate high-energy
truncations and regularizations, and that such regularizations should not affect too much the average
properties of the system, since high-energy states are quite unlikely under the canonical measure.

Functional analysis setting and notation

The reference Hilbert space for our analysis is the Hilbert space L2(μ). As in Talay (2002) for instance,
we will consider errors in the average of smooth functions whose derivatives grow at most polynomi-
ally (the space S defined below). In fact, since the position space is compact, only the growth in the
momentum variable has to be controlled.

The polynomial growth of a function can be characterized by the Lyapunov functions (for s ∈ N
∗ =

{1, 2, 3, . . .}):
Ks(q, p)= 1 + |p|2s.

This allows us to define the following Banach spaces of functions of polynomial growth:

L∞
Ks

=
{
ψ measurable

∣∣∣∣ ψKs
∈ L∞(E)

}
,
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endowed with the norms

‖ψ‖L∞
Ks

=
∥∥∥∥ ψKs

∥∥∥∥
L∞

.

To characterize the growth of the derivatives, we introduce the spaces W m,∞
Ks

defined as

W m,∞
Ks

= {f ∈ L∞
Ks

| ∀r ∈ N
2dN , |r| � m, ∂rf ∈ L∞

Ks
},

where |r| = r1 + r2 + · · · + r2dN , and ∂r stands for ∂r1
q1

· · · ∂rdN
qdN
∂rdN+1

p1
· · · ∂r2dN

pdN
.

Definition 2.2 (Sufficiently smooth functions) The set S of smooth functions is the set of functions
f ∈ L2(μ) such that, for any m � 0, there exists s � 0 (depending on f and m) so that f ∈ W m,∞

Ks
. The

subset S̃ ⊂ S is composed of the functions with average zero with respect to μ:

S̃ =
{

f ∈ S
∣∣∣∣
∫
E

f dμ= 0

}
.

Some of our results will be stated in the weighted Sobolev spaces Hm(μ) defined as

Hm(μ)= {f ∈ L2(μ) | ∀r ∈ N
2dN , |r| � m, ∂rf ∈ L2(μ)},

endowed with the norm
‖f ‖2

Hm(μ) = ‖u‖2
L2(μ) +

∑
r∈N

2dN

1�|r|�m

‖∂rf ‖2
L2(μ).

Note that W m,∞
Ks

⊂ Hm(μ) since the function Ks is in L2(μ). We will also occasionally need the Sobolev
spaces Hm(κ) of functions of the p variable only whose derivatives up to order m are square-integrable
with respect to the probability measure κ(dp).

Unless stated otherwise, all the operators appearing below are by default considered as operators
defined on the core S, with range contained in S. Some results are stated on extensions of the operators
under consideration to (sub)spaces of H1(μ) or L∞

Ks
. With some abuse of notation, we will denote the

extension of operators by the same letter. The appropriate domain of the operators should always be
clear from the context. When an operator T is defined on the core S, we denote by T∗ its formal adjoint,
which is the operator defined on S such that, for all (f , g) ∈ S2,

〈 f , Tg〉L2(μ) =
∫
E

f (q, p) (Tg)(q, p) μ(dq dp)=
∫
E
(T∗f )(q, p) g(q, p) μ(dq dp)= 〈T∗f , g〉L2(μ).

When T is a differential operator with smooth coefficient (which will be the case in many situations
here), the action of the formal adjoint is found using integration by parts.

2.1 Properties of equilibrium Langevin dynamics

Langevin dynamics can be seen as Hamiltonian dynamics perturbed by an Ornstein–Uhlenbeck process
in the momenta with friction coefficient γ > 0:⎧⎨

⎩
dqt = M −1pt dt,

dpt = −∇V(qt) dt − γM −1pt dt +
√

2γ

β
dWt,

(2.1)
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where Wt is a dN-dimensional standard Brownian motion and M is the mass matrix of the system.
We assume that the mass matrix is diagonal: M = diag(m1Id , . . . , mN Id), so that momenta are Gaussian
random vectors under the canonical measure, with unit covariance, and hence the components of p are
very easy to sample. Note that we formulate here the dynamics using friction forces proportional to the
velocity of the particles.

The existence and uniqueness of strong solutions is guaranteed when the position space is compact
since the kinetic energy function 1 + |p|2 is a Lyapunov function; see, for instance, Rey-Bellet (2006,
Theorem 5.9). We will sometimes denote by (qγ ,t, pγ ,t) the solution of this equation to emphasize the
dependence on the friction coefficient.

In order to describe more conveniently splitting schemes, it is useful to introduce the elementary
dynamics with generators (defined on the core S)

A = M −1p · ∇q, B = −∇V(q) · ∇p, C = −M −1p · ∇p + 1

β
Δp. (2.2)

The generator Lγ for equilibrium Langevin dynamics (2.1), defined on the core S, is the sum of the
generators of the elementary dynamics:

Lγ = A + B + γC,

where L0 = A + B is the generator associated with the Hamiltonian part of the dynamics. The invariance
of the canonical measure μ defined in (1.2) for the Langevin dynamics can be rewritten in terms of the
generator Lγ : for any test function ϕ ∈ S,

∫
E
Lγ ϕ dμ= 0. (2.3)

In fact, the operators A + B and C separately preserve μ. Recall also that, owing to the compact embed-
ding of

H1(κ) ∩ Ker(π)=
{

f ∈ H1(κ)

∣∣∣∣
∫

RdN

f (p)κ(dp)= 0

}

in L2(κ) ∩ Ker(π), it is easy to show that the operator C−1 is compact and positive definite on L2(κ) ∩
Ker(π). It is also easy to check that

(A + B)∗ = −(A + B), C∗ = C,

where, we recall, the adjoints are formally defined as operators on S through integration by parts. Note
that the formal adjoint

L∗
γ = −(A + B)+ γC (2.4)

defined on S has an action quite similar to the action of the generator Lγ defined on S. Func-
tional estimates valid for (extensions of) Lγ will therefore also hold for (extensions of) the formal
adjoint of this operator. The equality (2.4) expresses the reversibility up to momentum reversal of the
Langevin dynamics with respect to the invariant measure μ (see the discussion in Lelièvre et al., 2010,
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Section 2.2.3). In particular, introducing the bounded, unitary operator on L2(μ),

(Rϕ)(q, p)= ϕ(q, −p), (2.5)

(2.4) can be reformulated RLγR=L∗
γ .

2.1.1 Ergodicity results. The ergodicity of the Langevin dynamics for γ > 0, understood either as
the almost sure convergence of time averages along a realization of the dynamics, or the long-time
convergence of the law of the process to μ, is well established; see, for instance, Mattingly et al.
(2002), Talay (2002) and Cancès et al. (2007) and references therein. These references rely on the
use of Lyapunov functions, following strategies of proofs pioneered in the Markov Chain commu-
nity (see Meyn & Tweedie, 2009), although alternative proofs relying on analytical tools exist (see
Rey-Bellet, 2006; Hairer & Mattingly, 2011). In any case, the evolution semigroup can be given a
meaning in a weighted L∞-space, and the measure μ is the unique invariant measure of the dynam-
ics. This property can be translated as Ker(Lγ )= C1.

An alternative way to prove the long-time convergence of the law of the process is to use subelliptic
or hypocoercive estimates as studied in Talay (2002), Eckmann & Hairer (2003), Hérau & Nier (2004),
Hairer & Pavliotis (2008) and Villani (2009). An important result of hypocoercivity in this case is that
there exist Kγ , λγ > 0 such that the semigroup etLγ , defined on the core S̃, can be extended to a bounded
operator on an appropriate subspace of H1(μ):

‖etLγ ‖B(H1) � Kγ e−λγ t, (2.6)

where the subspace

H1 = H1(μ)\Ker(Lγ )=
{

u ∈ H1(μ)

∣∣∣∣
∫
E

u dμ= 0

}

of the Hilbert space H1(μ) is endowed with the norm ‖u‖2
H1(μ)

= ‖u‖2
L2(μ)

+ ‖∇pu‖2
L2(μ)

+ ‖∇qu‖2
L2(μ)

,

and ‖ · ‖B(H1) is the operator norm on H1. A similar bound holds for etL∗
γ . In particular, the operators

Lγ and L∗
γ are invertible on H1, and

‖L−1
γ ‖B(H1) �

Kγ
λγ

. (2.7)

Note also that the same bound holds for (L∗
γ )

−1.
For unbounded position spaces, the potential V has to satisfy some assumptions for (2.6) to hold

(such as a Poincaré inequality for e−βV ), but these assumptions are trivially satisfied when the position
space is compact, as is the case here. An important issue is the dependence on γ of the constants Kγ , λγ ,
or at least the dependence on γ of the resolvent norm ‖L−1

γ ‖B(H1). This is made precise in the results
presented below in Sections 2.1.2 and 2.1.3.

Before presenting these asymptotic estimates, let us first recall that a careful analysis of the proof
presented in Talay (2002), as provided by Kopec (2013), allows us to prove the following result.

Theorem 2.3 The space S̃ is stable under L−1
γ and (L∗

γ )
−1.

This result is of fundamental importance in our proofs. It allows us to state that if the operators
T1, . . . , TM are well-defined operators from S̃ to S̃ , then the operator L−1

γ TML−1
γ · · ·L−1

γ T1L−1
γ also is

a well-defined operator from S̃ to S̃.
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2.1.2 Hamiltonian limit γ → 0. When γ = 0, Langevin dynamics reduces to the Hamiltonian
dynamics, whose generator A + B has a kernel much larger than Ker(Lγ )= C1. It is therefore expected
that the operator norm of L−1

γ diverges as γ → 0. The rate of divergence is made precise in the following
theorem, summarizing the results from Hairer & Pavliotis (2008, Theorem 1.6 and Proposition 6.3).

Theorem 2.4 (see Hairer & Pavliotis, 2008) Denote by ‖ · ‖B(H0) the operator norm on the subspace

H0 =
{

u ∈ L2(μ)

∣∣∣∣
∫
E

u dμ= 0

}
(2.8)

of the Hilbert space L2(μ). There exist two constants c−, c+ > 0 such that, for any 0< γ � 1,

c−
γ

� ‖L−1
γ ‖B(H0) �

c+
γ

.

We state the result with the upper bound γ � 1, but it holds in fact for 0< γ � γmax for any finite
value γmax > 0. Note also that the same bound holds for (L∗

γ )
−1.

2.1.3 Overdamped limit γ → +∞. The overdamped limit can be obtained by either letting the fric-
tion go to infinity in (2.1) together with an appropriate rescaling of time; or by letting masses go to 0.
When discussing overdamped limits in this article, we will always set the mass matrix M to identity and
consider the limit γ → +∞. Since we restrict our attention to the invariant measure of the system, the
time rescaling is not relevant.

Let us describe more precisely the convergence result. It is shown in Lelièvre et al. (2010,
Section 2.2.4), for instance, that the solutions of (2.1) observed over long times, namely (qγ ,γ s, pγ ,γ s)s�0,
converge pathwise on finite time intervals s ∈ [0, t] to the solutions of overdamped Langevin dynamics

dQt = −∇V(Qt) dt +
√

2

β
dWt, (2.9)

with the same initial condition Q0 = qγ ,0. The process (2.9) is ergodic on the compact position space
M, with unique invariant probability measure μ(dq) defined in (1.5). Its generator

Lovd = −∇V(q) · ∇q + 1

β
Δq,

defined on the core S ∩ Ker(π)= C∞(M), is an elliptic operator which is symmetric on L2(μ),
with compact resolvent (see, for instance, the discussion and the references in Lelièvre et al., 2010,
Section 2.3.2). It is easy to see that the inverse operator L−1

ovd can be extended to a bounded operator
from

H̃m(μ)=
{
ϕ ∈ Hm(μ)

∣∣∣∣
∫
M
ϕ dμ= 0

}

to H̃m+2(μ). Let us finally mention that the set of C∞(M) functions with average zero with respect to μ
is of course stable with respect to L−1

ovd.
The following result gives bounds on the resolvent of the Langevin generator in the overdamped

regime, and in fact quantifies the difference between the resolvent L−1
γ and the resolvent L−1

ovd appropri-
ately rescaled by a factor γ .
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Theorem 2.5 There exist two constants c−, c+ > 0 such that, for any γ � 1,

c−γ � ‖L−1
γ ‖B(H1) � c+γ . (2.10)

More precisely, there exists a constant K > 0 such that, for any γ � 1,

‖L−1
γ − γL−1

ovdπ − pT∇qL−1
ovdπ + L−1

ovdπ(A + B)C−1(Id − π)‖B(H1) �
K

γ
,

‖(L∗
γ )

−1 − γL−1
ovdπ + pT∇qL−1

ovdπ − L−1
ovdπ(A + B)C−1(Id − π)‖B(H1) �

K

γ
,

(2.11)

where the operator π is defined in (1.6), and (C−1ψ)(q, p) is understood as applying the operator C−1

to the function ψ(q, ·) ∈ L2(κ) for all values of q ∈M.

Note that the function L−1
ovdπ f is well defined since, as f belongs to H1, the function π f has a

vanishing average with respect to μ. The fact that L−1
ovdπ(A + B)C−1(Id − π) is bounded on H1 is

discussed in the proof of Theorem 2.5. An important ingredient in the proof is the following estimate,
which we call a uniform hypocoercivity estimate.

Lemma 2.6 (Uniform hypocoercivity for large frictions) Consider the following subspace of H1:

H1
⊥ =

{
u ∈H1

∣∣∣∣ u(q)=
∫

RdN

u(q, p) κ(dp)= 0

}
.

There exists a constant K > 0 such that, for any γ � 1,

∀f ∈H1
⊥, ‖L−1

γ f ‖H1(μ) � K‖f ‖H1(μ).

The proofs of Theorem 2.5 and Lemma 2.6 are provided in Section 4.1.

2.2 Splitting schemes for equilibrium Langevin dynamics

We present in this section the splitting schemes to be examined in this article. These schemes can be
described by evolution operators PΔt defined on the core S (but which can be extended to bounded
operators on L∞(E)), and which are such that the Markov chain (qn, pn) generated by the discretization
satisfies

PΔtψ(q, p)= E(ψ(qn+1, pn+1) | (qn, pn)= (q, p)).

We also briefly give some ergodicity results obtained by minor extensions or variations of existing
results in the literature (see, in particular, Mattingly et al., 2002; Talay, 2002; Bou-Rabee & Owhadi,
2010; Bou-Rabee & Hairer, 2013). Since these ergodicity issues are by now a rather standard and
well-understood matter, especially for compact position spaces, we provide only elements of proofs
in Section 4.2.

2.2.1 First-order splitting schemes. First-order schemes are obtained by a Lie–Trotter splitting of
the elementary evolutions generated by A, B, γC. The motivation for this splitting is that all elementary
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evolutions are analytically integrable (see the expressions of the associated semigroups in (4.10)). There
are six possible schemes, whose evolution operators (defined on the core S) are of the general form

PZ,Y ,X
Δt = eΔtZ eΔtY eΔtX ,

with all possible permutations (Z, Y , X ) of (A, B, γC). For instance, the numerical scheme associated
with PB,A,γC

Δt is ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p̃n+1 = pn −Δt ∇V(qn),

qn+1 = qn +Δt M −1p̃n+1,

pn+1 = αΔtp̃n+1 +
√

1 − α2
Δt

β
M Gn,

(2.12)

where αΔt = exp(−γM −1Δt), and (Gn) are independent and identically distributed Gaussian random
vectors with identity covariance. The simulation of the dynamics with generator C is very simple for
diagonal mass matrix M since αΔt is a diagonal matrix. Note that the order of the operations per-
formed on the configuration of the system is the inverse of the order of the operations mentioned in
the superscript of the evolution operator PB,A,γC

Δt when read from right to left. This inversion is known
as Vertauschungssatz (see, for instance, the discussion in Hairer et al., 2006, Section III.5.1). It arises
from the fact that the numerical method modifies the distribution of the variables, whereas the evolution
operator encodes the evolution of observables (determined by the adjoint of the operator encoding the
evolution of the distribution).

The iterations of the three schemes associated with PγC,B,A
Δt , PB,A,γC

Δt , PA,γC,B
Δt share a common

sequence of update operations, as for PγC,A,B
Δt , PA,B,γC

Δt , PB,γC,A
Δt . More precisely, we mean that equalities

of the following form hold:

(PA,B,γC
Δt )n = TΔt(P

γC,A,B
Δt )n−1Uγ ,Δt, Uγ ,Δt = eγΔtC , TΔt = eΔtA eΔtB. (2.13)

It is therefore not surprising that the invariant measures of the schemes with operators composed in the
same order have very similar properties, as made precise in Theorem 2.13, relying on Lemma 2.12.

2.2.2 Second-order schemes. Second-order schemes are obtained by a Strang splitting of the ele-
mentary evolutions generated by A, B, γC. There are also six possible schemes, which are of the general
form

PZ,Y ,X ,Y ,Z
Δt = eΔtZ/2 eΔtY/2 eΔtX eΔtY/2 eΔtZ/2,

with the same possible orderings as for first-order schemes. Again, these schemes can be classified
into three groups depending on the ordering of the operators once the elementary one-step evolution
is iterated: (i) PγC,B,A,B,γC

Δt , PA,B,γC,B,A
Δt ; (ii) PγC,A,B,A,γC

Δt , PB,A,γC,A,B
Δt ; and (iii) PB,γC,A,γC,B

Δt , PA,γC,B,γC,A
Δt . We

discard the latter category, since the invariant measures of the associated numerical schemes are not
consistent with μ in the overdamped limit (see Section 2.6).

2.2.3 Geometric Langevin algorithms. In fact, as already proved in Bou-Rabee & Owhadi (2010)
(see also Corollary 2.17), a second-order accuracy of the invariant measure can be obtained by resorting



THE COMPUTATION OF AVERAGES IN LANGEVIN DYNAMICS 25

to a first-order splitting between the Hamiltonian and the Ornstein–Uhlenbeck parts, and discretizing
the Hamiltonian part with a second-order scheme. This corresponds to the following evolution operators
of Geometric Langevin Algorithm (GLA) type:

PγC,A,B,A
Δt = eγΔtC eΔtA/2 eΔtB eΔtA/2, PγC,B,A,B

Δt = eγΔtC eΔtB/2 eΔtA eΔtB/2,

PA,B,A,γC
Δt = eΔtA/2 eΔtB eΔtA/2 eγΔtC , PB,A,B,γC

Δt = eΔtB/2 eΔtA eΔtB/2 eγΔtC .
(2.14)

2.3 Ergodicity results for splitting schemes

Let us now give some technical results regarding the ergodic behaviour of the splitting schemes pre-
sented in Section 2.2. In this section, we denote the evolution operator by PΔt (suppressing the explicit
dependence on the friction parameter γ , although the constants appearing in the results below depend
on this parameter). Ergodicity results for a fixed value of Δt are obtained with techniques similar to the
ones presented in Meyn & Tweedie (2009), by mimicking the proofs presented for certain discretization
schemes of the Langevin equation in Mattingly et al. (2002), Talay (2002) and Bou-Rabee & Owhadi
(2010). A more subtle point is to obtain rates of convergence which are uniform in the timestep Δt, as
done in Bou-Rabee & Hairer (2013) for a class of Metropolis–Hastings schemes based on a discretiza-
tion of overdamped Langevin dynamics in unbounded spaces as the proposal. We are able here to prove
such results by relying on the fact that the position space M is compact.

The proof is based on two preliminary results, namely a uniform drift inequality or Lyapunov con-
dition and a uniform minorization condition (see Section 4.2 for the proofs). The term uniform refers to
estimates which are independent of the timestep Δt. To obtain such estimates, we have to consider evo-
lutions over fixed times T � nΔt, which amounts to iterating the elementary evolution PΔt over �T/Δt�
timesteps (where �x� denotes the smallest integer larger than x).

Lemma 2.7 (Uniform Lyapunov condition) For any s∗ ∈ N
∗, there exist Δt∗ > 0 and Ca, Cb > 0 such

that, for any 1 � s � s∗ and 0<Δt �Δt∗,

PΔtKs � e−CaΔtKs + CbΔt. (2.15)

In particular, for any T > 0,

P�T/Δt�
Δt Ks � exp(−CaT)Ks + CbΔt

1 − e−CaΔt
. (2.16)

Lemma 2.8 (Uniform minorization condition) Consider T > 0 sufficiently large, and fix any pmax > 0.
There existΔt∗,α > 0 and a probability measure ν such that, for any bounded, measurable non-negative
function f , and any 0<Δt �Δt∗,

inf
|p|�pmax

(P�T/Δt�
Δt f )(q, p)� α

∫
E

f (q, p) ν(dq dp).

Lemma 2.8 ensures that Hairer & Mattingly (2011, Assumption 2) holds for any choice of Lyapunov
function Ks (s � 1), provided pmax is chosen to be sufficiently large. The uniform minorization condition
can formally be rewritten as

∀(q0, p0) ∈M × B(0, pmax), PΔt((q0, p0), dq dp)� αν(dq dp).
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We present a direct proof of Lemma 2.8 in Section 4.2. Extending this result to unbounded position
spaces is much more difficult in general; see, for instance, the recent works of Klokov & Veretennikov
(2006, 2013) and Bou-Rabee & Hairer (2013), where nondegeneracy of the noise is assumed.

Let us now precisely state the ergodicity result.

Proposition 2.9 (Ergodicity of numerical schemes) Fix s∗ � 1. For any 0< γ <+∞, there exists
Δt∗ > 0 such that, for any 0<Δt �Δt∗, the Markov chain associated with PΔt has a unique invariant
probability measure μγ ,Δt, which admits a density with respect to the Lebesgue measure dq dp, and has
finite moments: There exists R> 0 such that, for any 1 � s � s∗,∫

E
Ks dμγ ,Δt � R<+∞, (2.17)

uniformly in the timestepΔt. There also exist λ, K > 0 (depending on s∗ and γ but not onΔt) such that,
for all functions f ∈ L∞

Ks
, the following holds for almost all (q, p) ∈ E :

∀n ∈ N,

∣∣∣∣(Pn
Δt f )(q, p)−

∫
E

f dμγ ,Δt

∣∣∣∣� KKs(q, p) e−λnΔt‖f ‖L∞
Ks

. (2.18)

Let us again emphasize that, compared with the results of Mattingly et al. (2002), Talay (2002)
and Bou-Rabee & Owhadi (2010), the only new estimate is the uniform-in-Δt decay rate in (2.18) as
obtained in Bou-Rabee & Hairer (2013) for Metropolis schemes. These uniform estimates follow from
an application of the results of Hairer & Mattingly (2011) to the sampled chain P�T/Δt�

Δt (see Section 4.2
for more detail). Recall also that the convergence rates we obtain of course depend on the friction
parameter γ .

An interesting consequence of the above estimates is that we are able to obtain obtain uniform
control of the resolvent of the operator Id − PΔt extended to appropriate Banach spaces. Such a bound
will prove useful to control approximation errors in Green–Kubo-type formulas (see Section 2.5). Note
indeed that the estimate (2.18) implies the operator bound

‖Pn
Δt‖B(L∞

Ks ,Δt)
� K e−λnΔt,

on the Banach space

L∞
Ks,Δt =

{
ψ ∈ L∞

Ks

∣∣∣∣
∫
E
ψ dμγ ,Δt = 0

}
.

The Banach space L∞
Ks,Δt depends both onΔt and γ through μγ ,Δt, although the dependence on γ is not

explicitly written. This proves that the series

+∞∑
n=0

Pn
Δt

is well defined as a bounded operator on L∞
Ks,Δt, and is in fact equal to (Id − PΔt)

−1 since

(Id − PΔt)

+∞∑
n=0

Pn
Δt = Id.
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We also have the bound

‖(Id − PΔt)
−1‖B(L∞

Ks ,Δt)
�

+∞∑
n=0

‖Pn
Δt‖B(L∞

Ks ,Δt)
� K

1 − e−λΔt
� 2K

λΔt

provided Δt is sufficiently small. Let us summarize this result as follows.

Corollary 2.10 For any s∗ ∈ N
∗, there existΔt∗ > 0 and R> 0 such that, for all 0 � s � s∗, a uniform

resolvent bound holds: for any 0<Δt �Δt∗,∥∥∥∥∥
(

Id − PΔt

Δt

)−1
∥∥∥∥∥
B(L∞

Ks ,Δt)

� R. (2.19)

2.4 Error estimates for finite frictions

In this section, we study the error of the average of sufficiently smooth functions, which allows us to
characterize the corrections to the invariant measure. In Theorems 2.13 and 2.16 below, we characterize
all the first- and second-order splittings; the technique of proof allows us to provide a rigorous study
of the error estimates in the overdamped regime (see Section 2.6) and for nonequilibrium systems (see
Section 3).

Remark 2.11 If only the order of magnitude of the correction is of interest, and not the expression of
the correction in itself, no regularity result with regard to the derivatives is required (see Bou-Rabee &
Owhadi, 2010), in contrast to situations where such corrections are explicitly considered, as in Talay
(2002), for instance.

2.4.1 Relating invariant measures of two numerical schemes. We classified in Section 2.2 the numer-
ical schemes according to the order of appearance of the elementary operators. More precisely, we con-
sidered schemes to be similar when the global ordering of the operators is the same, but the operations
are started and ended differently, as in (2.13) above (see also (2.20) for an abstract definition). This
choice of classification is motivated by the following lemma, which demonstrates how we may straight-
forwardly obtain the expression of the invariant measure of one scheme when the expression for another
one is given.

We state the result in an abstract fashion for two schemes PΔt = UΔtTΔt and QΔt = TΔtUΔt (which
implies the condition (2.20) below). See (2.13) for a concrete example.

Lemma 2.12 (Here and elsewhere: TU lemma) Consider two numerical schemes with associated evolu-
tion operators PΔt, QΔt bounded on L∞(E), for which there exist bounded operators UΔt, TΔt on L∞(E)
such that, for all n � 1,

Qn
Δt = TΔtP

n−1
Δt UΔt. (2.20)

We also assume that both schemes are ergodic with associated invariant measures denoted, respectively,
by μP,Δt, μQ,Δt: For almost all (q, p) ∈ E and f ∈ L∞(E),

lim
n→+∞ Pn

Δt f (q, p)=
∫
E

f dμP,Δt, lim
n→+∞ Qn

Δt f (q, p)=
∫
E

f dμQ,Δt. (2.21)
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Then, for all ϕ ∈ L∞(E), ∫
E
ϕ dμQ,Δt =

∫
E
(UΔtϕ) dμP,Δt. (2.22)

Ergodicity results such as (2.21) are implied by conditions such as (2.18).

Proof. The proof of this result relies on the simple observation that, for a given initial measure ρ with
a smooth density with respect to the Lebesgue measure, the ergodicity assumption ensures that, for a
bounded measurable function ϕ,∫

E
ϕ dμQ,Δt = lim

n→+∞

∫
E

Qn
Δtϕ dρ = lim

n→+∞

∫
E

TΔtP
n−1
Δt (UΔtϕ) dρ.

Now, we use the ergodicity property (2.21) with f replaced by UΔtϕ to obtain the following convergence
for almost all (q, p) ∈ E :

lim
n→+∞ Pn−1

Δt (UΔtϕ)(q, p)=
∫
E

UΔtϕ dμP,Δt = aΔt.

Since TΔt preserves constant functions, there holds

∫
E

TΔt(aΔt1) dρ = aΔt

∫
E

1 dρ = aΔt,

which finally gives (2.22). �

Let us now show how we will use Lemma 2.12 in the sequel. Assume that a weak error estimate
holds on the invariant measure μP,Δt: there exist α � 1 and a function fα ∈ S such that

∫
E
ψ dμP,Δt =

∫
E
ψ dμ+Δtα

∫
E
ψ fα dμ+Δtα+1rψ ,α,Δt,

with |rψ ,α,Δt| � K forΔt sufficiently small. Combining this equality and (2.22), the following expansion
is obtained for μQ,Δt:∫

E
ψ dμQ,Δt =

∫
E
(UΔtψ) dμP,Δt =

∫
E
(UΔtψ) dμ+Δtα

∫
E
(UΔtψ)fα dμ+Δtα+1rUΔtψ ,α,Δt.

In general, for an evolution operator UΔt preserving the measure μ at order δ � 1, we can write

UΔt = Id +ΔtA1 + · · · +Δtδ−1Aδ−1 +Δtδ Sδ +Δtδ+1 Rδ,Δt,

where all the operators on the right-hand side are defined on the core S, and the operators Ak preserve
the measure μ:

∀ϕ ∈ S,
∫
E
Akϕ dμ= 0,
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while the operator Sδ does not. Typically, Ak is a composition of the operators A + B and C. In addition,
for a given function ϕ ∈ S, the remainder Rδ,Δtϕ is uniformly bounded for Δt sufficiently small. Three
cases should then be distinguished:

(i) When δ � α + 1, the weak error in the invariant measure μQ,Δt is of the same order as for μP,Δt

since ∫
E
ψ dμQ =

∫
E
ψ dμ+Δtα

∫
E
ψ fα dμ+Δtα+1r̃ψ ,α,δ,Δt.

(ii) For δ � α − 1, the weak error in the invariant measure μQ arises at dominant order from the
operator UΔt: ∫

E
ψ dμQ =

∫
E
ψ dμ+Δtδ

∫
E
ψ(S∗

δ 1) dμ+Δtδ+1r̃ψ ,α,δ,Δt.

(iii) The interesting case corresponds to α= δ. In this situation,∫
E
ψ dμQ =

∫
E
ψ dμ+Δtα

∫
E
ψ(fα + S∗

α1) dμ+Δtα+1r̃ψ ,α,δ,Δt. (2.23)

An increase in the order of the error on the invariant measure is obtained when the leading-order
correction vanishes for all admissible observables ψ , that is, if and only if fα + S∗

α1 = 0.

2.4.2 First-order schemes. The following result characterizes at leading order the invariant measure
of the schemes based on a first-order splitting (see Section 2.2.1). We first study the error estimates in
the invariant measure of the schemes PγC,B,A

Δt , PγC,A,B
Δt (which can be interpreted as GLA schemes with

a symplectic Euler discretization of the Hamiltonian part; see Bou-Rabee & Owhadi, 2010), and then
deduce error estimates for the four remaining schemes introduced in Section 2.2.1 by making use of
Lemma 2.12. The proof can be read in Section 4.4.

Theorem 2.13 Consider any of the first-order splittings presented in Section 2.2.1, and denote by
μγ ,Δt(dq dp) its invariant measure. Then, there exists a function f1,γ ∈ S̃ such that, for any function
ψ ∈ S,∫

E
ψ(q, p) μγ ,Δt(dq dp)=

∫
E
ψ(q, p) μ(dq dp)+Δt

∫
E
ψ(q, p)f1,γ (q, p) μ(dq dp)+Δt2rψ ,γ ,Δt,

(2.24)
where the remainder rψ ,γ ,Δt is uniformly bounded for Δt sufficiently small. The expressions of the
correction functions f1,γ depend on the numerical scheme at hand. They are defined as

L∗
γ f γC,B,A

1 = − 1
2 (A + B)g, g(q, p)= βpTM −1∇V(q),

f γC,A,B
1 = f A,B,γC

1 = −f B,A,γC
1 = −f γC,B,A

1 ,

f A,γC,B
1 = −f B,γC,A

1 = f γC,B,A
1 − g.

(2.25)

It would in fact be possible to obtain bounds on the remainder rψ ,γ ,Δt with respect to ψ , owing to
functional inequalities given in Appendix A of Kopec (2013).



30 B. LEIMKUHLER ET AL.

Remark 2.14 Equations (2.25) could be analytically solved if, instead of the fluctuation/dissipation
operator C, we were using the mass-weighted differential operator as in Leimkuhler & Matthews
(2013a):

CM = −pT∇p + 1

β
M : ∇2

p .

The corresponding generator Lγ ,M = A + B + γCM defined on the core S is associated with Langevin
dynamics, where the friction force is proportional to the momenta rather than velocities. A simple
computation shows that

−1

2
(A + B)g =L∗

γ ,M

(
β

2
V − g

)
.

The condition (2.25) would be replaced by L∗
γ ,M f γC,B,A

1 = −(A + B)g/2, so that f γC,B,A
1 = βV/2 − g +

c, where c is a constant ensuring that f γC,B,A
1 has a vanishing average with respect to μ.

2.4.3 Hamiltonian limit of the correction term. For first-order splitting schemes, the limit of the
leading-order correction term in (2.24) can be studied in the limit when γ → 0. Not surprisingly, it turns
out that the leading-order correction is the first term in the expansion of the modified Hamiltonian of the
symplectic Euler method in powers ofΔt. In contrast to the more complete proof we are able to present
for the overdamped limit (see Section 2.6), we were not able to study the behaviour of the remainder
terms rψ ,γ ,Δt in (2.24). There is a technical obstruction to controlling these remainders from the way
we prove our results since the limiting operator L0 = A + B is not invertible. Let us also mention that
studying the corresponding Hamiltonian limit for second-order schemes turns out to be a much more
difficult question (see Remark 2.18).

Proposition 2.15 There exists a constant K > 0 such that, for all 0< γ � 1,∥∥∥∥f γC,B,A
1 − β

2
pTM −1∇V

∥∥∥∥
L2(μ)

� Kγ ,

with similar estimates for f B,γC,A
1 and f B,A,γC

1 ; and∥∥∥∥f γC,A,B
1 + β

2
pTM −1∇V

∥∥∥∥
L2(μ)

� Kγ ,

with similar estimates for f A,γC,B
1 and f A,B,γC

1 .

The proof of this result is provided in Section 4.5.

2.4.4 Second-order schemes. The following result characterizes at leading order the invariant
measure of the schemes based on a second-order splitting (see Section 2.2.2).

Theorem 2.16 Consider any of the second-order splittings presented in Section 2.2.2, and denote
by μγ ,Δt(dq dp) its invariant measure. Then, there exists a function f2,γ ∈ S̃ such that, for any
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function ψ ∈ S,∫
E
ψ(q, p) μγ ,Δt(dq dp)=

∫
E
ψ(q, p) μ(dq dp)+Δt2

∫
E
ψ(q, p)f2,γ (q, p) μ(dq dp)+Δt4rψ ,γ ,Δt,

(2.26)
where the remainder rψ ,γ ,Δt is uniformly bounded for Δt sufficiently small. The expressions of the
correction functions f2,γ depend on the numerical scheme at hand. They are defined as

L∗
γ f γC,B,A,B,γC

2 = 1

12
(A + B)

[(
A + B

2

)
g

]
, g(q, p)= βpTM −1∇V(q),

L∗
γ f γC,A,B,A,γC

2 = − 1

12
(A + B)

[(
B + A

2

)
g

]
,

f A,B,γC,B,A
2 = f γC,B,A,B,γC

2 + 1

8
(A + B)g,

f B,A,γC,A,B
2 = f γC,A,B,A,γC

2 − 1

8
(A + B)g.

(2.27)

It can be checked that the expressions of f B,A,γC,A,B
2 and f A,B,γC,B,A

2 agree with the ones presented
in Leimkuhler & Matthews (2013a). Let us emphasize that no Δt3 correction term appears in (2.26)
after the Δt2 term. In fact, a more careful treatment would allow us to write an error expansion in terms
of higher orders of Δt, with only even powers of Δt appearing.

The proof of this result is given in Section 4.6. We use as reference schemes for the proofs the
schemes PγC,A,B,A,γC

Δt , PγC,B,A,B,γC
Δt . These schemes indeed turn out to be particularly convenient to study

the overdamped limit.
The results from Theorem 2.16 allow us to obtain error estimates for the so-called GLAs introduced

in Bou-Rabee & Owhadi (2010). Recall the somewhat surprising result that the error in the invariant
measure of the GLA schemes is of order Δtp for a discretization of order p of the Hamiltonian part,
even though the weak and strong orders of the scheme are only one. The following result complements
the estimate given in Bou-Rabee & Owhadi (2010) by making precise the leading-order corrections to
the invariant measure of the numerical scheme with respect to the canonical measure (see the proof in
Section 4.7).

Corollary 2.17 (Error estimates for GLA schemes) Consider one of the GLA schemes defined
in (2.14), and denote by μγ ,Δt(dq dp) its invariant measure. Then, there exist functions f2,γ , f3,γ ∈ S̃
such that, for any function ψ ∈ S,∫

E
ψ(q, p) μγ ,Δt(dq dp)=

∫
E
ψ(q, p) μ(dq dp)+Δt2

∫
E
ψ(q, p)f2,γ (q, p) μ(dq dp)

+Δt3
∫
E
ψ(q, p)f3,γ (q, p) μ(dq dp)+Δt4rψ ,γ ,Δt, (2.28)

where the remainder rψ ,γ ,Δt is uniformly bounded for Δt sufficiently small. The expressions of the
correction functions f2,γ and f3,γ are

f γC,A,B,A
2 = f γC,A,B,A,γC

2 , f γC,A,B,A
3 = −γ

2
Cf γC,A,B,A

2 ,
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f γC,B,A,B
2 = f γC,B,A,BγC

2 , f γC,B,A,B
3 = −γ

2
Cf γC,B,A,B

2 .

Note that the leading-order term of the error is the same as for the corresponding second-order
splitting schemes. The next-order correction (of order Δt3) vanishes for functions ψ depending only on
the position variable q.

Remark 2.18 (Hamiltonian limit of the correction functions f2,γ ) Proving a result similar to Propo-
sition 2.15 for second-order splitting schemes or GLA schemes, turns out to be much more difficult,
although we formally expect that the limit of f2,γ as γ → 0 is the first-order correction of the modified
Hamiltonian constructed by backward analysis. From (2.27), it should indeed be the case that f γC,B,A,B,γC

2
converges to

f B,A,B
2 = − 1

12

(
A + B

2

)
g.

Moreover, as we already mentioned before Proposition 2.15, we are not able to uniformly control
remainder terms in the error expansion (2.26) as γ → 0.

2.5 Numerical estimation of the correction term

The results of Section 2.4 show that the leading-order correction terms for the average of an observ-
able ψ ∈ S can be written as ∫

E
ψ(q, p)fγ (q, p) μ(dq dp), (2.29)

where the function fγ ∈ S̃ is the solution of a Poisson equation

L∗
γ fγ = gγ , (2.30)

the function gγ ∈ S̃ depending on the numerical scheme at hand (the fact that fγ ∈ S̃ is a consequence
of Theorem 2.3). It is in general impossible to analytically solve (2.30), and very difficult to numeri-
cally approximate its solution since it is a high-dimensional partial differential equation. It is, however,
possible to rewrite (2.29) as an integrated correlation function, a quantity which is amenable to numer-
ical approximation. This is a standard way of computing transport coefficients based on Green–Kubo
formulae; see the summary provided in Section 3.1. It provides here a way to compute the first-order
correction in the perfect sampling bias with a single simulation (as an alternative to Romberg extra-
polation, which requires at least two simulations at different timesteps; see Talay & Tubaro, 1990).

2.5.1 Error estimates. The approach we follow is based on the following operator identity (which
makes sense in H1, for instance, in view of (2.6))

L−1
γ = −

∫ +∞

0
etLγ dt.

Since ∫
E
(etLγ ψ)gγ dμ= E(ψ(qt, pt)gγ (q0, p0)),
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where the expectation is taken over all initial conditions (q0, p0) distributed according to μ and over
all realizations of equilibrium Langevin dynamics (2.1), the leading-order correction term (2.29) can be
rewritten as ∫

E
ψ(q, p)fγ (q, p)μ(dq dp)= −

∫ +∞

0
E(ψ(qt, pt)gγ (q0, p0)) dt. (2.31)

The following result (proved in Section 4.8) shows how to approximate quantities such as (2.31) up to
errors O(Δtα), when the invariant measure of the numerical scheme is correct to terms of order O(Δtα)
(as discussed in Section 2.4). The fundamental ingredient is the replacement of the observable ψ by
some modified observable, in the spirit of backward analysis. Let us emphasize that we do not require
the numerical scheme to be of weak or strong order p in itself. For instance, GLA schemes are only
first-order correct on trajectories (as proved in Bou-Rabee & Owhadi, 2010), but nonetheless may have
invariant measures which are very close to μ. To somewhat simplify the notation and state our result
in a more general fashion since it can be used in other contexts than Langevin dynamics (see Fathi
et al., 2014 for an application to Metropolis–Hastings schemes), we do not denote explicitly all the
dependencies on γ , although the reader should keep them in mind.

Theorem 2.19 Consider a numerical method with an invariant measure μΔt having bounded moments
at all orders (i.e., (2.17) is satisfied) and such that, for ψ ∈ S,∫

E
ψ dμΔt =

∫
E
ψ dμ+Δtαrψ ,Δt, (2.32)

where the remainder rψ ,Δt is uniformly bounded for Δt small enough. Suppose in addition that its
evolution operator PΔt is such that, for any ψ ∈ S,

− Id − PΔt

Δt
ψ =Lγ ψ +ΔtS1ψ + · · · +Δtα−1Sα−1ψ +ΔtαR̃α,Δtψ , (2.33)

where S1ψ , . . . , Sα−1ψ , R̃α,Δtψ ∈ S and there exists s> 0 such that the remainder R̃α,Δtψ is uniformly
bounded in L∞

Ks
for Δt sufficiently small. Assume finally that PΔt satisfies the uniform ergodicity con-

dition (2.18) (hence (2.19) holds). Then, the integrated correlation of two observables ψ ,ϕ ∈ S̃ can be
approximated by a Riemann sum up to an error of order Δtα:

∫ +∞

0
E(ψ(qt, pt)ϕ(q0, p0)) dt =Δt

+∞∑
n=0

EΔt(ψ̃Δt,α(q
n, pn)ϕ(q0, p0))+Δtαrψ ,ϕ

Δt , (2.34)

where rψ ,ϕ
Δt is uniformly bounded for Δt sufficiently small, the expectation EΔt is over all initial condi-

tions (q0, p0) distributed according to μΔt and over all realizations of the Markov chain induced by PΔt,
and the modified observable ψ̃Δt,α ∈ S reads

ψ̃Δt,α =ψΔt,α −
∫
E
ψΔt,α dμΔt, ψΔt,α = (Id +Δt S1L−1

γ + · · · +Δtα−1Sα−1L−1
γ )ψ .

The assumptions of this theorem are satisfied for the splitting schemes considered in this article (see
the comment after (4.15) for the boundedness of the remainder R̃α,Δtψ).

In the particular case α= 2, which is in fact the most relevant one from a practical viewpoint, it is
possible not to modify the observable ψ when the discrete generator is correct at order 2 (see (2.35)
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below for a precise statement), upon considering a time discretization of the integral which leads to
errors of order Δt2, for instance a trapezoidal rule. The following result is obtained by an appropriate
application of Theorem 2.19 (see Section 4.8 for the proof).

Corollary 2.20 (Trapezoidal rule for second-order schemes) Consider a numerical scheme satisfying
the assumptions of Theorem 2.19, and whose discrete generator is in addition correct at order 2: for any
ψ ∈ S,

− Id − PΔt

Δt
ψ =Lγ ψ + Δt

2
L2
γ ψ +Δt2R̃Δtψ . (2.35)

Then, for two observables ϕ,ψ ∈ S̃ ,

∫ +∞

0
E(ψ(qt, pt)ϕ(q0, p0)) dt

= Δt

2
EΔt(ψΔt,0(q

0, p0)ϕ(q0, p0))+Δt
+∞∑
n=1

EΔt(ψΔt,0(q
n, pn)ϕ(q0, p0))+Δt2rψ ,ϕ

Δt , (2.36)

where rψ ,ϕ
Δt is bounded for Δt sufficiently small and

ψΔt,0 =ψ −
∫
E
ψ dμΔt.

2.5.2 Numerical approximation. There are two principal ways to estimate the expectations in (2.34)
or (2.36), using either several independent realizations of the nonequilibrium dynamics or a single, long
trajectory; see, for instance, the discussion in Tuckerman (2010, Section 13.4). When K independent
realizations (qn,k , pn,k) are generated for Niter timesteps each, starting from initial conditions distributed
according to μΔt, the expectation in (2.34) may be approximated using empirical averages of the corre-
lation functions as

Δt

K

K∑
k=1

Niter∑
n=0

[ψΔt,α(q
n,k , pn,k)− Ψ

K,Niter
Δt,α ]ϕ(q0,k , p0,k),

where α= 1 and ψΔt,1 =ψ for first-order splittings; while α= 2 and ψΔt,2 = (1 +ΔtLγ /2)ψ for
second-order ones since S1 =L2

γ /2 for the schemes presented in Section 2.2.2 (see, for instance, (4.22)).

The empirical average ΨM ,Niter
Δt,p reads

Ψ
M ,Niter
Δt,α = 1

K(1 + Niter)

K∑
k=1

Niter∑
n=0

ψΔt,α(q
n,k , pn,k).

This formula highlights the other errors arising from the discretization: (i) a statistical error related to
the finiteness of K and to the fact that initial conditions are obtained in practice by subsampling a single,
long trajectory; (ii) a truncation error related to the finiteness of Niter.
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Fig. 1. Left: The error in the value of the integrated velocity autocorrelation function is compared at a number of timesteps
when computed using a Riemann sum or the correction term provided in (2.34). The result from computing the integral using
the trapezoidal rule is also shown. Right: The error in the computed average of total energy is plotted, with the correction term
computed using the same stepsize demonstrating the practical application of the method. We can test the validity of (2.26) in
principle by computing the correction more accurately at a smaller timestep in a separate simulation; this result is labelled as the
‘exact correction’. All results are computed using the scheme associated with PγC,B,A,B,γC

Δt with β = γ = 1.

2.5.3 Numerical illustration. We illustrate the convergence results (2.34) and (2.36) for a simple
two-dimensional system. We define q = (x, y) ∈M= (2πT)2, and consider the potential

V(q)= 2 cos(2x)+ cos(y).

The inverse temperature is fixed to β = 1 and we consider a trivial mass matrix M = Id with unit
friction γ = 1. Trajectory data are taken from 103 independent runs of fixed time interval 2 × 108,
with the aim to compute the integral of the velocity autocorrelation function, which corresponds to
ψ(q, p)= ϕ(q, p)= M −1p in (2.34). Using the second-order PγC,B,A,B,γC

Δt scheme, applying the appropri-
ate correction function (2.36) gives the predicted order Δt2 result, while the standard Riemann approx-
imation has errors of order Δt. In the numerical results in Fig. 1, the corrected approximation gives
marginally better results than the trapezoidal rule (though of the same order) due to additional higher-
order terms being included.

Let us now numerically confirm the error estimates (2.24–2.28). More precisely, we show that, pro-
vided the leading correction term (2.29) is estimated by discretizing (2.31) using (2.36) and subtracted
from the estimated result, canonical averages are estimated up to errors of order Δt4 for second-order
splittings instead ofΔt2 without the correction. We use the same trajectory data as above to approximate
the canonical average of the total system energy H . We test the effectiveness of the correction both in
practice and principle, by computing the observed average and correction term in the same simulation
in the former case, while computing a more accurate correction term independently in the latter case
(using a smaller timestep Δt = 0.1). The results are shown in the right panel of Fig. 1.

2.6 Overdamped limit

We study in this section the overdamped limit γ → +∞, assuming that the mass matrix is M = Id. We
first study the consistency of the invariant measures of limiting numerical schemes in Section 2.6.1,
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before stating precise convergence results for second-order splitting schemes in Section 2.6.2. Ulti-
mately, we relate in Section 2.6.3 the overdamped limit of the correction terms obtained for finite γ to
the correction obtained by directly studying the overdamped limit.

2.6.1 Overdamped limits of splitting schemes. The only part of the numerical schemes where the
friction enters is the Ornstein–Uhlenbeck process on momenta. The limit γ → +∞ for Δt> 0 fixed
amounts to resampling momenta according to the Gaussian distribution κ(dp) at all timesteps. For
instance, the numerical scheme associated with the evolution operator PγC,B,A,B,γC

Δt reduces to

qn+1 = qn − Δt2

2
∇V(qn)+ Δt√

β
Gn,

where (Gn) are independent and identically distributed Gaussian random vectors with identity covari-
ance. This is indeed a consistent discretization of the overdamped process (2.9) with an effective
timestep h =Δt2/2, and the invariant measure of this numerical scheme is close to μ. Other schemes
may have nontrivial large friction limits and invariant measures close to μ. This is the case for the
scheme associated with the evolution operator PB,A,γC,A,B

Δt , for which the limiting discrete dynamics
reads (see Leimkuhler & Matthews, 2013a)

q1 = q0 − Δt2

4
∇V(q0)+ Δt

2
√
β
(G0 + G1),

qn+1 = qn − Δt2

2
∇V(qn)+ Δt

2
√
β
(Gn + Gn+1), for n> 0.

Note that (qn) is not a Markov chain due to the correlations in the random noises.
On the other hand, the limits of the invariant measures associated with certain schemes are not

consistent with the canonical measure μ. This is the case for the first-order schemes, as well as the
second-order splittings listed in item (iii) in Section 2.2.2. For instance, the limit of the scheme associ-
ated with PγC,A,B

Δt reads

qn+1 = qn + Δt√
β

Gn.

The invariant measure of this Markov chain is the uniform measure on M, and is therefore very different
from the invariant measure μ of the continuous dynamics (2.9) (it amounts to setting V = 0). As another
example, consider the limit of the scheme associated with PγC,B,A

Δt :

qn+1 = qn −Δt2∇V(qn)+ Δt√
β

Gn.

This is the Euler–Maruyama discretization of (2.9) with an effective timestep h =Δt2, but an inverse
temperature 2β rather than β.

2.6.2 Rigorous error estimates. The following result quantifies the errors of the invariant measure
of second-order splitting schemes of Langevin dynamics for large values of γ . We restrict ourselves
to the second-order splittings where the Ornstein–Uhlenbeck part is either at the ends or in the middle
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(categories (i) and (ii) in Section 2.2.2). From a technical viewpoint, we are able here to bound remainder
terms uniformly in γ by relying on the properties of the limiting operator L−1

ovd. The result we obtain is
the following (see Section 4.9 for the proof).

Theorem 2.21 Consider any of the second-order splittings presented in Section 2.2.2, denote by
μγ ,Δt(dq dp) its invariant measure, and by μγ ,Δt(dq) its marginal in the position variable. Then, there
exists a function f2,∞ = f2,∞(q) ∈ C∞(M), with average zero with respect to μ, such that, for any
smooth ψ =ψ(q) ∈ C∞(M) and γ � 1,

∫
M
ψ(q) μγ ,Δt(dq)=

∫
M
ψ dμ+Δt2

∫
M
ψ f2,∞ dμ+ rψ ,γ ,Δt,

where the remainder is of order Δt4 up to terms exponentially small in γΔt. More precisely, there exist
constants a, b � 0 and c> 0 (all depending on ψ) such that

|rψ ,γ ,Δt| � aΔt4 + b e−cγΔt.

The expression of f2,∞ depends on the numerical scheme at hand:

f γC,B,A,B,γC
2,∞ (q)= 1

8
(−2ΔV + β|∇V |2 + aβ,V ), aβ,V =

∫
M
ΔV dμ= β

∫
M

|∇V |2 dμ,

f A,B,γC,B,A
2,∞ (q)= −1

8
(ΔV − aβ,V ),

f γC,A,B,A,γC
2,∞ (q)= 1

8
(ΔV − β|∇V |2),

f B,A,γC,A,B
2,∞ (q)= 0.

(2.37)

The real number aβ,V ensures that all functions f2,∞ are of average zero with respect to μ. Two
comments are in order. Note first that the result is stated for observables which depend only on the
position variable q since the limiting case γ → +∞ corresponds to a dynamics on the positions only.
Anyway, there is no restriction in stating the result using such observables since, as already discussed
in the introduction, the error on the marginal in the position variables is the relevant error, momenta
being trivial to sample exactly under the canonical measure. Secondly, let us emphasize that the Δt2

correction term vanishes for the method associated with PB,A,γC,A,B
Δt (as already noted in Leimkuhler &

Matthews, 2013a). This means that the corresponding discretization of overdamped Langevin dynamics
(formally obtained by setting γ = +∞) has an invariant measure which is correct at second order in the
effective timestep h =Δt2/2.

2.6.3 Overdamped limit of the correction terms. In order to relate the convergence result from
Theorem 2.21 to the error estimates from Theorem 2.16, we prove that the limits of the correction
functions f2,γ as γ → +∞ agree with the functions defined in (2.37) (see Section 4.10 for the proof).
This can be seen as a statement regarding the permutation of the limits γ → +∞ and Δt → 0 for the
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leading correction term, namely, for a smooth function ψ =ψ(q) ∈ C∞(M),

lim
Δt→0

lim
γ→+∞

1

Δt2

(∫
M
ψ dμγ ,Δt −

∫
M
ψ dμ

)
= lim
γ→+∞ lim

Δt→0

1

Δt2

(∫
M
ψ dμγ ,Δt −

∫
M
ψ dμ

)

= lim
γ→+∞

∫
M
ψ(π f2,γ ) dμ

=
∫
M
ψ f2,∞ dμ.

The precise result is the following proposition.

Proposition 2.22 There exists a constant K > 0 such that, for all γ � 1,∥∥∥∥f γC,B,A,B,γC
2 − 1

8
(−2ΔV + β|∇V |2 + aβ,V )

∥∥∥∥
H1(μ)

� K

γ
,

∥∥∥∥f A,B,γC,B,A
2 − 1

8
(−2ΔV + βpT(∇2V)p + aβ,V )

∥∥∥∥
H1(μ)

� K

γ
,

∥∥∥∥f γC,A,B,A,γC
2 − 1

8
(ΔV − β|∇V |2)

∥∥∥∥
H1(μ)

� K

γ
,

∥∥∥∥f B,A,γC,A,B
2 − 1

8
(ΔV − βpT(∇2V)p)

∥∥∥∥
H1(μ)

� K

γ
,

where the constant aβ,V is defined in (2.37).

Note that, as expected, the averages with respect to κ(dp) of the above limiting functions coincide
with the functions f2,∞ given in (2.37), that is, π f2,γ = f2,∞ + O(γ−1).

Let us also mention that the overdamped limit of the correction function f1,γ for first-order splittings
is not well defined. This is not surprising since the invariant measures of the corresponding numerical
schemes are not consistent with μ, as discussed in Section 2.6.1. For instance, combining (2.11) and the
expressions of the correction functions (2.25), we see that there exists a constant K > 0 such that∥∥∥∥f γC,B,A

1 + γβ

2
L−1

ovdLovd,M V

∥∥∥∥
H1(μ)

� K, (2.38)

where the operator

Lovd,M = −M −1∇V · ∇q + 1

β
M : ∇2,

defined on S, is the generator of the overdamped Langevin dynamics with nontrivial mass matrix:

dqt = −M −1∇V(qt) dt +
√

2

β
M −1/2 dWt.
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Note that, when M = Id, the solution can in fact be analytically computed as f γC,B,A
1 = −β(γV +

pT∇V)/2. In any case, (2.38) shows that f γC,B,A
1 diverges as γ → +∞.

3. Nonequilibrium dynamics and the computation of transport coefficients

We discuss in this section the numerical estimation of transport properties such as the thermal conduc-
tivity, the shear stress, etc. (see Evans & Morriss, 2008; Tuckerman, 2010 for general physical presen-
tations of the computation of transport coefficients, and Stoltz, 2012, Section 3.1 for a mathematically
oriented introduction).

We consider the prototypical case of the estimation of the autodiffusion coefficient. In this situation,
it is relevant to consider a nonequilibrium perturbation of standard equilibrium Langevin dynamics,
where some external forcing arising from a constant force F ∈ R

dN is imposed on the system:⎧⎨
⎩

dqt = M −1pt dt,

dpt = (−∇V(qt)+ ηF) dt − γM −1pt dt +
√

2γ

β
dWt.

(3.1)

We defined by
L̃= F · ∇p

the generator of the perturbation (considered as an operator on L2(μ), with core S). Note that the con-
stant force F does not derive from the gradient of a smooth function defined on M. (It would indeed
seem that this force derives from −FTq, but this potential is not periodic.) Therefore, the expression of
the invariant measure is unknown, but can be nonetheless obtained as an expansion in powers of η when
the magnitude of the forcing is sufficiently small (see Section 3.1). The effect of the force is to create a
nonzero average velocity in the direction of F. The magnitude of the average velocity is a property of
the system under consideration. For small forcings, it is linear in η, with a constant of proportionality
called the mobility (see the definition (3.3) below), related to the autodiffusion coefficient through (3.6).

Remark 3.1 As shown in Joubaud et al. (2015), it is possible to consider more general forcing terms
F(q) which do not derive from the gradient of a periodic function. A popular example is provided by
shearing forces where the particles experience a force in some direction, whose intensity depends on
the coordinates of the system in another direction.

We will also be interested in the overdamped limit of the nonequilibrium dynamics (3.1), which
reads

dqt = (−∇V(qt)+ ηF) dt +
√

2

β
dWt. (3.2)

The generator of this dynamics is Lovd + ηL̃ovd with L̃ovd = F · ∇q (all operators being defined on the
core S). In this case, the physically relevant response turns out to be the average force −F · ∇V exerted
in the direction F.

3.1 Definition of transport coefficients

Following the strategy advertised in Rey-Bellet (2006) (using the kinetic energy as a Lyapunov func-
tion), it is easy to show that the dynamics (3.1) has a unique invariant probability measure μγ ,η(dq dp)
with a smooth density with respect to the Lebesgue measure for any value of η ∈ R. The mobility νF,γ
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is defined as the linear response of the velocity in the direction F as the magnitude of the forcing goes
to 0:

νF,γ = lim
η→0

1

η

∫
E

FTM −1pμγ ,η(dq dp). (3.3)

From linear response theory (see, for example, the presentation in Stoltz, 2012, Section 3.1, and the
short summary provided in Section 4.11), it can be shown that

νF,γ =
∫
E

FTM −1p f0,1,γ (q, p) μ(dq dp), L∗
γ f0,1,γ = −L̃∗1 = −βFTM −1p. (3.4)

The mobility can therefore be rewritten as the integrated autocorrelation function of the velocity in the
direction F:

νF,γ = β

∫ +∞

0
E[(FTM −1pt)(F

TM −1p0)] dt, (3.5)

where the expectation is over all initial conditions (q0, p0) distributed according to μ and over all
realizations of the equilibrium Langevin dynamics (2.1). From this relation, it is easily seen that the
mobility in the direction F is related to the autodiffusion coefficient

DF,γ = lim
t→+∞

E[(F · (qt − q0))
2]

2t
(3.6)

as
νF,γ = βDF,γ .

In practice, the two most popular ways of estimating a transport coefficient rely on the Green–Kubo
formula (3.5) and the linear response of nonequilibrium dynamics in their steady states (3.3). Since the
error estimates for Green–Kubo-type formulas have already been discussed in Theorem 2.19, we will
restrict ourselves in the sequel to the analysis of the numerical errors introduced by nonequilibrium
methods.

3.1.1 Overdamped limit. The overdamped limit of the mobility νF,γ is studied in Hairer & Pavliotis
(2008), where the authors consider the autodiffusion coefficient DF,γ . First, it is easily shown that the
overdamped dynamics (3.2) admits a unique invariant probability measure, which we denote by μη(dq).
The mobility for the overdamped dynamics (3.2) is defined from the linear response of the projected
force −F · ∇V as

νF = lim
η→0

1

η

∫
M

−FT∇V(q) μη(dq)= β

∫
M

FT∇V(q)L−1
ovd(F

T∇V(q))μ(dq). (3.7)

The derivation of this formula is very similar to that leading to (3.3). The following result summarizes
the limiting behaviour of the mobility as the friction increases (recall that we set mass matrices to
identity when studying overdamped limits).

Lemma 3.2 There exists K > 0 such that, for any γ � 1,

∣∣γ νF,γ − νF − |F|2∣∣� K

γ
.
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This result is already contained in Hairer & Pavliotis (2008), but we nonetheless provide a short
alternative proof in Section 4.11.2 (see Remark 4.4 for a more precise comparison of the results). It
shows that, in the overdamped regime γ → +∞,

νF,γ = |F|2 + νF

γ
+ O

(
1

γ 2

)
, (3.8)

which suggests to estimate νF,γ using the linear response of FT∇V for large frictions, since this quantity
is expected to be a good approximation of νF – instead of relying on the standard linear response
result (3.3), for which the response is of order 1/γ , and is hence difficult to reliably estimate. Error
estimates on the numerical approximation are deduced from (3.11).

3.2 Numerical schemes for the nonequilibrium Langevin dynamics

We present in this section numerical schemes approximating solutions of (3.1). These schemes reduce to
the schemes presented in Section 2.2 when η= 0. Since the aim is to decompose the evolution generated
by Lγ + ηL̃ into analytically integrable parts, there are two principal options: either replace B by

Bη = B + ηL̃,

or replace C by C + ηL̃. However, the schemes built on the latter option do not perform correctly in
the overdamped limit, since their invariant measures are not consistent with the invariant measures of
nonequilibrium overdamped Langevin dynamics (3.2). More precisely, consider, for instance, the first-

order scheme generated by PA,B,γC+ηL̃
Δt = eΔt A eΔt B eΔt(γC+ηL̃) in the case when M = Id:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qn+1 = qn +Δtpn,

p̃n+1 = pn −Δt∇V(qn+1),

pn+1 = αΔtp̃n+1 + 1 − αΔt

γ
ηF +

√
1 − α2

Δt

β
Gn,

where αΔt is defined after (2.12), and (Gn) is a sequence of independent and identically distributed Gaus-
sian random vectors with identity covariance. As γ → +∞, a standard Euler–Maruyama discretization
of the equilibrium overdamped Langevin dynamics (i.e., η= 0) is obtained, whereas we would like to
obtain a consistent discretization of nonequilibrium overdamped Langevin dynamics (3.2). We therefore
instead consider schemes obtained by replacing B with B + ηL̃, such as the first-order splitting

PA,B+ηL̃,γC
Δt = eΔtA eΔt(B+ηL̃) eγΔtC,

or the second-order splitting

PγC,B+ηL̃,A,B+ηL̃,C
Δt = eγΔtC/2 eΔt(B+ηL̃)/2 eΔtA eΔt(B+ηL̃)/2 eγΔtC/2.
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The numerical scheme associated with the first-order splitting scheme PA,B+ηL̃,γC
Δt⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qn+1 = qn +Δt pn,

p̃n+1 = pn +Δt(−∇V(qn+1)+ ηF),

pn+1 = αΔtp̃n+1 +
√

1 − α2
Δt

β
Gn,

indeed is, in the limit as γ → +∞, a consistent discretization of the nonequilibrium Langevin dynamics
(3.2), and its invariant measure turns out to converge to the invariant measure of (3.2) in the limit
Δt → 0.

Following the method of proof of Proposition 2.9, it can be shown that there exists a unique invariant
measure μγ ,η,Δt for the corresponding Markov chain. The crucial point is that the gradient structure of
the force term is never used explicitly in the proofs since we rely solely on the boundedness of the
force, so that we are able to obtain convergence results and moment estimates that are independent of
the magnitude η of the forcing term, provided η is in a bounded subset of R. We denote below by Pγ ,η,Δt

the evolution operator associated with the numerical schemes.

Proposition 3.3 (Ergodicity of numerical schemes for nonequilibrium systems) Fix s∗ � 1 and η∗ > 0.
For any 0< γ <+∞, there exists Δt∗ such that, for any 0<Δt �Δt∗ and η ∈ [−η∗, η∗], the Markov
chain associated with Pγ ,η,Δt has a unique invariant probability measure μγ ,η,Δt, which admits a density
with respect to the Lebesgue measure dq dp, and has finite moments: There exists R> 0 such that, for
any 1 � s � s∗, ∫

E
Ks dμγ ,η,Δt � R<+∞,

uniformly in the timestep Δt and the forcing magnitude η. There also exist λ, K > 0 (depending on s∗,
γ and η∗ but not onΔt) such that, for all functions f ∈ L∞

Ks
, the following holds for almost all (q, p) ∈ E :

∀n ∈ N,

∣∣∣∣(Pn
γ ,η,Δtf )(q, p)−

∫
E

f dμγ ,η,Δt

∣∣∣∣� K Ks(q, p) e−λnΔt‖f ‖L∞
Ks

.

Let us emphasize that we do not have any control on the convergence rate λ in terms of η∗, and it
could well be that λ goes to 0 as η∗ increases.

3.3 Error estimates on transport coefficients from nonequilibrium methods

The following result provides error estimates for the invariant measure of the first-order or second-order
splittings schemes of Section 2.2.2 when B is replaced by Bη.

Theorem 3.4 Denote by p the order of the splitting scheme, by fα,0,γ the leading order correction
function in the case η= 0 as given by Theorem 2.13 for α= 1 and by Theorem 2.16 for α= 2. Then,
there exists a function fα,1,γ ∈ S̃ such that, for any smooth function ψ ∈ S, there exist Δt∗, η∗ > 0 and a
constant K > 0 for which, for all η ∈ [−η∗, η∗] and 0<Δt �Δt∗,∫

E
ψ dμγ ,η,Δt =

∫
E
ψ(1 + ηf0,1,γ +Δtαfα,0,γ + ηΔtαfα,1,γ ) dμ+ rψ ,γ ,η,Δt,
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where f0,1,γ is defined in (3.4), and

|rψ ,γ ,η,Δt| � K(η2 +Δtα+1), |rψ ,γ ,η,Δt − rψ ,γ ,0,Δt| � Kη(η +Δtα+1).

The proof of this result can be found in Section 4.12. Note that the remainder term now collects
higher-order terms both as powers of the timestep and the nonequilibrium parameter η. The estimates we
obtain on the remainder are, however, compatible with taking the linear response limit, as made precise
by the following error estimate on the transport coefficient (which is an immediate consequence of
Theorem 3.4). In order to state the result, we introduce the reference linear response for an observable ψ

Dψ ,γ ,0 = lim
η→0

1

η

(∫
E
ψ dμγ ,η −

∫
E
ψ dμγ

)
,

and its numerical approximation

Dψ ,γ ,Δt = lim
η→0

1

η

(∫
E
ψ dμγ ,η,Δt −

∫
E
ψ dμγ ,Δt

)
.

It is often the case that ψ has a vanishing average with respect to μ, as is the case for the function
FTM −1p in (3.3). In general, it, however, has a nonzero average with respect to the invariant measure
μγ ,Δt of the numerical scheme associated with a discretization of the equilibrium dynamics.

Corollary 3.5 There exist Δt∗, η∗ > 0 and a constant K > 0 such that, for all η ∈ [−η∗, η∗] and 0<
Δt �Δt∗,

Dψ ,γ ,Δt = Dψ ,γ ,0 +Δtα
∫
E
ψ fα,1,γ dμ+Δtα+1rψ ,γ ,Δt,

where rψ ,γ ,Δt is uniformly bounded.

In particular, we obtain the following estimate on the numerically computed mobility:

νF,γ ,Δt = lim
η→0

1

η

(∫
E

FTM −1pμγ ,η,Δt(dq dp)−
∫
E

FTM −1pμγ ,0,Δt(dq dp)

)
(3.9)

= νF,γ +Δtα
∫
E

FTM −1p fα,1,γ dμ+Δtα+1rγ ,Δt, (3.10)

where the reference mobility νF,γ is defined in (3.4).

3.3.1 Numerical illustration. We consider the same system as in Section 2.5.3, with an external force
F = (1, 0) and K + 1 forcing strengths ηk = (k − 1)Δη uniformly spaced in the interval [0, ηmax] with
ηmax = 0.5 (so thatΔη= ηmax/K). We fix the friction to γ = 1 and the inverse temperature to β = 1. We
use a coupling strategy to reduce the statistical noise in the computation of the linear response (3.9). The
K + 1 replicas of the system are started at the same position q = (0, 0), with the same velocity (sampled
according to the canonical measure μ). Each replica experiences the force −∇V + ηkF (Note that the
first replica experiences the reference force −∇V corresponding to a discretization of the equilibrium
dynamics). Most importantly, the same Gaussian random numbers Gn are used for all replicas to dis-
cretize the Brownian motion. Although not carefully documented here, this coupling strategy tremen-
dously decreases the statistical error in the computed linear response. Such a coupling strategy was
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Fig. 2. Left: Linear response of the average velocity δvη as a function of η (K = 50) for the scheme associated with P
γC,Bη ,A,Bη ,γC
Δt

andΔt = 0.01, γ = 1. A linear fit on the first 10 values gives δvη � 0.07416η, so that νF,γ ,Δt = 0.07416 in this case. Right: Scaling

of the mobility νF,γ ,Δt for the first-order scheme P
A,Bη ,γC
Δt and the second-order scheme P

γC,Bη ,A,Bη ,γC
Δt (with γ = 1). The fits,

respectively, give νF,γ ,Δt � 0.0740 + 0.0817Δt and νF,γ ,Δt � 0.0741 + 0.197Δt2.

already proposed for exclusion processes in Goodman & Lin (2009). However, our experience shows
that it fails for higher-dimensional systems with more complex potentials (such as Lennard–Jones flu-
ids).

For a given value of the timestep Δt, we denote by (qk,n, pk,n)n�0 the discrete trajectory of the kth
replica. The linear response in the projected average velocity δvηk is approximated over Niter integration
steps as

δvηk =
∫
E

FTM −1pμΔt,ηk (dq dp)−
∫
E

FTM −1pμΔt,0(dq dp)

� 1

Niter

Niter∑
n=1

FTM −1(pk,n − p1,n)= v̂ Niter
ηk

.

We then estimate the mobility by a linear fit on the first K ′ = 10 values of v̂ Niter
ηk

considered as a func-
tion of ηk (see Fig. 2, left). The value νF,γ ,Δt is the estimated slope in the fit. The behaviour of the
mobility νF,γ ,Δt as a function of the timestep is presented in Fig. 2 (right) for the numerical schemes

associated with the first-order splitting P
A,Bη ,γC
Δt and the second-order splitting P

γC,Bη ,A,Bη ,γC
Δt . We used

Niter = 4 × 1011 for the first-order scheme, and Niter = 2.5 × 1011 for the second-order one. The statisti-
cal error is very small and error bars are therefore not reported. The computed mobilities can be fitted
for small Δt as

νF,γ ,Δt � 0.0740 + 0.0817Δt

for the first-order splitting and

νF,γ ,Δt � 0.0741 + 0.197Δt2

for the second-order splitting scheme, in agreement with the theoretical prediction (3.10).
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3.4 Error estimates in the overdamped limit

We now study the numerical errors arising in the simulation of nonequilibrium systems in the large
friction limit. We restrict ourselves to the second-order splittings where the Ornstein–Uhlenbeck part is
either at the ends or in the middle (categories (i) and (ii) in Section 2.2.2). To state the result, we intro-
duce the first-order correction to the invariant measure in terms of the magnitude of the nonequilibrium
forcing, namely (recall L̃ovd = F · ∇q)

L∗
ovdf0,1,∞ = −L̃∗

ovd1 = −βFT∇V .

A simple computation based on (2.11) shows that the functions f0,1,γ defined in (3.4) converge in H1(μ)

to f0,1,∞ (recall that we assume M = Id in the overdamped regime).

Theorem 3.6 Denote by μγ ,η,Δt(dq) the marginal of the invariant measure μγ ,η,Δt of an admissible
second-order splitting scheme in the position variable, and by f2,0,∞ the leading-order correction function
in the case η= 0 as given by Theorem 2.21. Then, there exists a function f2,1,∞ ∈ S̃ such that, for any
ψ ≡ψ(q) ∈ C∞(M), there exist Δt∗, η∗ > 0 and constants K, c> 0 such that, for all η ∈ [−η∗, η∗],
0<Δt �Δt∗ and γ � 1,∫

M
ψ(q) μγ ,η,Δt(dq)=

∫
M
ψ(q)(1 + ηf0,1,∞(q)+Δt2f2,0,∞(q)+ ηΔt2f2,1,∞)μ(dq)+ rψ ,γ ,η,Δt,

with

|rψ ,γ ,η,Δt| � K(η2 +Δt3 + e−cγΔt), |rψ ,γ ,η,Δt − rψ ,γ ,0,Δt| � Kη(η +Δt3 + e−cγΔt).

The proof is presented in Section 4.13. This result allows us to estimate the error in the computation
of the transport coefficient νF,γ based on (3.7) and Lemma 3.2. Indeed, studying the linear response of
the observable −FT∇V and defining

νF,γ ,Δt = − lim
η→0

1

η

(∫
M

FT∇V(q) μγ ,η,Δt(dq)−
∫
M

FT∇V(q) μγ ,Δt(dq)

)
,

there holds

νF = νF,γ ,Δt −Δt2
∫
M

FT∇V(q)f2,1,∞(q) μ(dq)+ rψ ,γ ,Δt,

with |rψ ,γ ,Δt| � a(Δt3 + e−cγΔt) for some a> 0. Therefore, in view of (3.8),

νF,γ = |F|2 + νF

γ
+ O

(
1

γ 2

)
= |F|2 + νF,γ ,Δt

γ
+ O

(
1

γ 2
,
Δt2

γ
,

e−cγΔt

γ

)
. (3.11)

In the latter expression, νF,γ ,Δt can be numerically estimated, in a manner similar to that presented at
the end of Section 3.3.

4. Proofs of the results

Unless otherwise stated, the default norm ‖f ‖ and scalar product 〈f , g〉 are the ones associated with the
Hilbert space L2(μ). Recall that, unless otherwise mentioned, all operators are defined on S, and that
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formal adjoint operators are by default considered on L2(μ). Recall also that

C = − 1

β
∇∗

p ∇p = − 1

β

N∑
i=1

d∑
α=1

∂∗
pi,α
∂pi,α , (4.1)

with pi = (pi,1, . . . , pi,d) since ∂∗
pi,α

= −∂pi,α + βpi,α .

4.1 Large friction behaviour of L−1
γ

The proof of Lemma 2.6 follows the same lines as the proof of uniform hypocoercive estimates in the
corrected version of Joubaud & Stoltz (2012a, Theorem 3) (see the erratum Joubaud & Stoltz, 2013
or the updated preprint version Joubaud & Stoltz, 2012b). We provide a simplified version of it for
completeness.

Proof of Lemma 2.6. We show that the operator Lγ is uniformly hypocoercive for γ � 1. The aim is to
obtain bounds on the inverse L−1

γ extended to H1
⊥. To this end, we decompose Lγ for γ � 1 as

Lγ =L1 + (γ − 1)C.

The proof of Theorem 6.2 in Hairer & Pavliotis (2008) shows that there exists α̃ > 0 such that, for all
u ∈ S,

−〈〈u,L1u〉〉 � α̃〈〈u, u〉〉,
where the norm induced by 〈〈·, ·〉〉 is equivalent to the H1(μ)-norm. More precisely, 〈〈·, ·〉〉 is the bilinear
form defined by

〈〈u, v〉〉 = a〈u, v〉 + b〈∇pu, ∇pv〉 − 〈∇pu, ∇qv〉 − 〈∇qu, ∇pv〉 + b〈∇qu, ∇qv〉,

with appropriate coefficients a � b � 1. It follows that there exists α > 0 independent of γ such that

α‖u‖2
H1(μ) − (γ − 1)〈〈u, Cu〉〉 � −〈〈u,Lγ u〉〉. (4.2)

Let us now show that

∀u ∈H1
⊥ ∩ S, −〈〈u, Cu〉〉 � 0. (4.3)

Using the rewriting (4.1) of the operator C, and the commutation relations [∂pi,α , ∂∗
pj,α′ ] = βδα,α′δij, a

simple computation shows

〈〈u, (∂pi,α )
∗∂pi,αu〉〉 = (a + βb)‖∂pi,αu‖2 + b‖∇p∂pi,αu‖2

+ b‖∇q∂pi,αu‖2 − 2〈∇q∂pi,αu, ∇p∂pi,αu〉 − β〈∂qi,αu, ∂pi,αu〉

�
(

a + β

(
b − 1

2

))
‖∂pi,αu‖2 + (b − 1)‖∇p∂pi,αu‖2

+ (b − 1)‖∇q∂pi,αu‖2 − β

2
‖∂qi,αu‖2. (4.4)
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Now, since the Gaussian measure κ(dp) satisfies a Poincaré inequality, there exists a constant A> 0
such that, for all i = 1, . . . , N and α = 1, . . . , d,

‖∂qi,αu‖2 � A‖∇p∂qi,αu‖2.

Note indeed that ∂qi,αu has a vanishing average with respect to the Gaussian measure κ(dp) because

∫
RdN

∂qi,αu(q, p) κ(dp)= ∂qi,αu(q)= 0

for functions u ∈H1
⊥. Therefore,

N∑
i=1

d∑
α=1

‖∂qi,αu‖2 � A
N∑

i,j=1

d∑
α,α′=1

‖∂pj,α′ ∂qi,αu‖2 = A
N∑

j=1

d∑
α′=1

‖∇q∂pj,α′ ‖2.

Summing (4.4) on i ∈ {1, . . . , N} and α ∈ {1, . . . , d}, the quantity (4.3) is seen to be non-negative for an
appropriate choice of constants a � b � 1.

From (4.2), we then deduce that there exists a constant K > 0 such that, for any γ � 1 and for any
u ∈H1

⊥ ∩ S, it holds ‖u‖H1(μ) � K‖Lγ u‖H1(μ). Taking inverses and passing to the limit in H1
⊥ gives

∀γ � 1, ∀u ∈H1
⊥, ‖L−1

γ u‖H1(μ) � K‖u‖H1(μ),

which is the desired result. �

We are now in position to give the proof of Theorem 2.5.

Proof of Theorem 2.5. We write the proof for L−1
γ . The estimates for (L∗

γ )
−1 are obtained by using

L∗
γ =RLγR (the momentum reversal operator being defined in (2.5)), and the fact that RCR= C,

RLovdR=Lovd and R(A + B)R= −(A + B).
The lower bound in (2.10) could be obtained directly provided V is not constant, by considering the

special case

Lγ (pT∇V + γ (V − v))= pTM −1(∇2V)p − |∇V |2,

where v is a constant chosen such that pT∇V + γ (V − v) has a vanishing average with respect toμ. This
example is also useful to motivate the fact that, in general, solutions of the Poisson equation Lγ uγ = f
have divergent parts of order γ as γ → +∞.

Let us now turn to the refined upper and lower bounds (2.11), which we prove using techniques
from asymptotic analysis. Consider f ∈H1, and uγ ∈H1 the unique solution of the following Poisson
equation Lγ uγ = f . The above example suggests the following expansion in inverse powers of γ :

uγ = γ u−1 + u0 + 1

γ
u1 + · · · (4.5)
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To rigorously prove this expansion, we first proceed formally, taking (4.5) as an ansatz, plugging it into
Lγ u = f and identifying terms according to powers of γ . This leads to

Cu−1 = 0,

(A + B)u−1 + Cu0 = 0,

(A + B)u0 + Cu1 = f .

The first equality implies that u−1 = u−1(q) since C satisfies a Poincaré inequality on L2(κ) (where κ is
defined in (1.6)). The second then reduces to Cu0 = −M −1p · ∇qu−1, from which we deduce u0(q, p)=
pT∇u−1(q)+ ũ0(q). Inserting this expression in the third equality gives

Cu1 = f − pTM −1(∇2u−1)p − pTM −1∇ũ0 + (∇V)T∇u−1.

The solvability condition for this equation is that the right-hand side has a vanishing average with
respect to κ , i.e., belongs to the kernel of π . This condition reads

1

β
Δu−1 − (∇V)T∇u−1 = π f ,

so that u−1 =L−1
ovdπ f (which is well defined since π f has a vanishing average with respect to μ). Note

that the function u−1 is in Hn+2(μ)when f ∈ Hn(μ) (by elliptic regularity, using also the fact that e−βV(q)

is a smooth function bounded from above and below on M), so that pTM −1(∇2u−1)p belongs to L2(μ).
The equation determining u1 then reduces to

Cu1 = (f − π f )− pTM −1∇ũ0 − pTM −1(∇2u−1)p + 1

β
Δu−1.

Since C(pTAp)= −pTM −1(A + AT)p + 2β−1Tr(A), we can choose

u1(q, p)= [C−1(f − π f )](q, p)+ 1
2 pT(∇2u−1(q))p + pT∇qũ0(q).

Coming back to (4.5), we see that the proposed approximate solution is such that

Lγ
(

uγ − γ u−1 − u0 − 1

γ
u1

)
= − 1

γ
(A + B)u1. (4.6)

We now choose ũ0 such that (A + B)u1 belongs to H1
⊥, which amounts to

π(A + B)pT∇qũ0 =Lovdũ0 = −π(A + B)C−1(f − π f ).

It is easily checked that ũ0 = −L−1
ovdπ(A + B)C−1(f − π f ) is a well-defined element in H1 for f ∈

H1(μ): first, C−1(f − π f ) ∈H1, so (A + B)C−1(f − π f ) ∈ L2(μ). Finally, the image under L−1
ovdπ of

any function in L2(μ) is a function of average zero with respect to μ, depending only on the position
variable q and belonging to H2(μ) and hence to H1.

Combining (4.6) and Lemma 2.6, we see that there exists a constant R> 0, such that, for all
γ � 1, it holds ‖uγ − γ u−1 − u0‖H1(μ) � R‖f ‖H1(μ)/γ for the above choices of functions u−1, u0. This
gives (2.11). �
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4.2 Ergodicity results for numerical schemes

Proof of Lemma 2.7. We write the proof for the scheme associated with the evolution operator PB,A,γC
Δt ,

starting by the case s = 1, before turning to the general case s � 2. The proofs for other schemes are
very similar, and we therefore skip them.

The numerical scheme corresponding to PB,A,γC
Δt is (2.12). We introduce m ∈ (0, +∞) such that

m � M � m−1 (in the sense of symmetric matrices). A simple computation shows that

E[(pn+1)2|Fn] = (pn −Δt∇V(qn))Tα2
Δt(p

n −Δt∇V(qn))+ 1

β
Tr[(1 − α2

Δt)M
2]

� e−2mγΔt(pn)2 + 2Δt‖∇V‖L∞|pn| +Δt2‖∇V‖2
L∞ + 1 − e−2γΔt/m

βm2

� (e−2mγΔt + εΔt)(pn)2 +Δt

(
1

ε
+Δt

)
‖∇V‖2

L∞ + 1 − e−2γΔt/m

βm2
.

We choose, for instance, ε= mγ , in which case

0 � e−2mγΔt + εΔt � exp(−CaΔt), Ca = mγ

2
,

for Δt sufficiently small, and

0 �Δt

(
1

ε
+Δt

)
‖∇V‖2

L∞ + 1 − e−2γΔt/m

βm2
� C̃bΔt, C̃b = 2

mγ
‖∇V‖2

L∞ + 4γ

βm3

for Δt sufficiently small. Finally, since K2(q, p)= 1 + |p|2,

E[K2(q
n+1, pn+1) |Fn] � e−CaΔtK2(q

n, pn)+ 1 − e−CaΔt + C̃bΔt � e−CaΔtK2(q
n, pn)+ CbΔt,

for Δt sufficiently small. This gives (2.15). To obtain (2.16), we iterate the bound (2.15):

Pn
ΔtKs � e−Ca nΔtKs + CbΔt(1 + e−CaΔt + · · · + e−Ca (n−1)Δt)� e−Ca nΔtKs + CbΔt

1 − e−CaΔt
.

The computations are similar for a general power s � 2. We write pn+1 = αΔtpn + δΔt with
δΔt = −αΔtΔt∇V(qn)+

√
β−1(1 − α2

Δt)M Gn. Note that δΔt is of order Δt1/2 because of the random
term. We work componentwise, using the assumption that M is diagonal, so that, denoting by mi the
mass of the ith degree of freedom,

(pn+1
i )2s = (e−γΔt/mi pn

i + δi,Δt)
2s

= e−2sγΔt/mi(pn
i )

2s + 2s e−(2s−1)γΔt/mi(pn
i )

2s−1δi,Δt

+ s(2s − 1) e−2(s−1)γΔt/mi(pn
i )

2(s−1)δ2
i,Δt + · · ·
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Taking expectations,

E[(pn+1
i )2s|Fn] = e−2sγΔt/mi(pn

i )
2s − 2sΔt e−2sγΔt/mi(pn

i )
2s−1∂qi V(q

n)

+ s(2s − 1) e−2(s−1)γΔt/mi(pn
i )

2(s−1)

(
Δt2 e−2γΔt/mi∂qi V(q

n)+ (1 − e−2γΔt/mi)mi

β

)

+Δt2rs,Δt,i(q
n)(1 + (pn)2s−3),

where the remainder rs,Δt(qn) is uniformly bounded as Δt → 0. Distinguishing between |pi| � 1/ε and
|pi| � 1/ε, we have

|pi|2s−m � εm(pi)
2s + 1

ε2s−m
,

from which we obtain

E[(pn+1
i )2s |Fn] � âΔt,ε,i(p

n
i )

2s + b̂Δt,ε,i,

with

âΔt,ε,i = e−2sγΔt/mi + 2sεΔt‖∂qi V‖L∞

+ s(2s − 1)ε2

(
Δt2‖∂qi V‖L∞ + (1 − e−2γΔt/mi)mi

β

)
+ ε3Δt2‖rs,Δt,i‖L∞ ,

and

b̂Δt,ε,i = 2s

ε
Δt‖∂qi V‖L∞ + s(2s − 1)

ε2

(
Δt2‖∂qi V‖L∞ + (1 − e−2γΔt/mi)mi

β

)
+Δt2

(
1 + 1

ε3

)
‖rs,Δt,i‖L∞ .

The proof is then concluded as in the case s = 1 by choosing ε sufficiently small (independently of
Δt). �

Proof of Lemma 2.8. It is sufficient to prove the result for indicator functions of Borel sets A = Aq ×
Ap ⊂ E , where Aq ⊂M while Ap ⊂ R

dN (see Rudin, 1987). We therefore aim at proving

P((qn, pn) ∈ A | |p0| � pmax)� αν(A),

for a well-chosen probability measure ν and a constant α > 0. The idea of the proof is to explicitly
rewrite qn and pn as perturbations of the reference evolution corresponding to ∇V = 0 and (q0, p0)=
(0, 0). Since we consider smooth potentials and the position space is compact, the perturbation can be
uniformly controlled when the initial momenta are within a compact set.

We write the proof for the scheme associated with the evolution operator PB,A,γC
Δt , as in the proof of

Lemma 2.7. A simple computation shows that, for n � 1,

qn = q0 +ΔtM −1(pn−1 + · · · + p0)−Δt2M −1(∇V(qn−1)+ · · · + ∇V(q0)),
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and

pn = αn
Δtp

0 −ΔtαΔt(∇V(qn−1)+ αΔt∇V(qn−2)+ · · · + αn−1
Δt ∇V(q0))

+
√

1 − α2
Δt

β
M (Gn−1 + αΔtG

n−2 + · · · + αn−1
Δt G0).

Denote by Gn the centred Gaussian random variable

Gn =
√

1 − α2
Δt

β
M (Gn−1 + αΔtG

n−2 + · · · + αn−1
Δt G0).

Introduce also

Fn = −αΔt(∇V(qn−1)+ αΔt∇V(qn−2)+ · · · + αn−1
Δt ∇V(q0)),

Pn = αn
Δt p0 +Δt Fn,

Qn = q0 +ΔtM −1

(
Δt

n−1∑
m=0

Fm + 1 − αn
Δt

1 − αΔt
p0

)
−Δt2M −1(∇V(qn−1)+ · · · + ∇V(q0)).

With this notation,

pn = Pn + Gn, qn = Qn + G̃n,

where

G̃n =ΔtM −1
n−1∑
m=1

Gm

=Δt

√
1 − α2

Δt

β
M −1(Gn−2 + (1 + αΔt)G

n−3 + · · · + (1 + αΔt + · · · + αn−2
Δt )G

0)

is a centred Gaussian random variable. Now,

P((qn, pn) ∈ A||p0| � pmax)= P((G̃n,Gn) ∈ (Aq − Qn)× (Ap − Pn)||p0| � pmax). (4.7)

In fact, we consider in the sequel that the random variable G̃n has values in R
dN rather than M and

understand Aq − Qn as a subset of R
dN rather than M. This amounts to neglecting the possible periodic

images, and henceforth reduces the probability on the right-hand side of the above inequality. This is,
however, not a problem since we seek a lower bound.

Note that Δt Fn is uniformly bounded: using 0 � αΔt � exp(−γmΔt) in the sense of symmetric,
positive matrices (with m � M � m−1),

|ΔtFn| � ‖∇V‖L∞
Δt

1 − exp(−γmΔt)
� 2

mγ
‖∇V‖L∞
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provided Δt is sufficiently small. Therefore, there exists a constant R> 0 (depending on pmax) and
Δt∗ > 0 such that, for all timesteps 0<Δt �Δt∗ and corresponding integration steps 0 � n � T/Δt,

|Qn| � R, |Pn| � R. (4.8)

A lengthy but straightforward computation shows that the variance of the centred Gaussian vector
(G̃n,Gn) is

V n = E[(G̃n,Gn)T(G̃n,Gn)] =
(

V n
qq V n

qp

V n
qp V n

pp

)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V n
qq = Δt (1 − α2

Δt)

(1 − αΔt)2
M −1

(
(n − 1)Δt − 2Δt αΔt

1 − αΔt
(1 − αn−1

Δt )+ Δt α2
Δt

1 − α2
Δt

(1 − α
2(n−1)
Δt )

)
,

V n
qp = Δt αΔt

β(1 − αΔt)
(1 − αn−1

Δt (1 + αΔt)+ α2n−1
Δt ),

V n
pp = M

β
(1 − α2n

Δt).

To check that this expression is appropriate, we note that it converges as Δt → 0 with nΔt → T to the
variance of the limiting continuous process

dqt = M −1pt dt, dpt = −γM −1pt dt +
√

2γ

β
dWt,

starting from (q0, p0)= (0, 0), which reads

V =
(

Vqq Vqp

Vqp Vpp

)
,

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vqq = 1

βγ

(
2T − M

γ
(3 − 4αT + α2

T )

)
,

Vqp = M

βγ
(1 − αT )

2,

Vpp = M

β
(1 − α2

T ).

Upon reducingΔt∗ > 0, it holds V /2 � V �T/Δt� � 2V for 0<Δt �Δt∗. In particular, V �T/Δt� is invert-
ible for T sufficiently large. For a set Eq × Ep ⊂ R

2dN , it then holds that

P((G̃�T/Δt�,G�T/Δt�) ∈ E)= (2π)−dN det(V �T/Δt�)−1/2
∫

Eq×Ep

exp

(
−1

2
xT(V �T/Δt�)−1x

)
dx

� π−dN 2−3dN/2 det(V )−1/2
∫

Eq×Ep

exp(−xTV −1x) dx. (4.9)
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The result follows by combining (4.7–4.9) and introducing the probability measure

ν(Aq × Ap)= Z−1
R inf

|Q|,|P|�R

∫
(Aq−Q)×(Ap−P)

exp(−xTV −1x) dx,

as well as α= ZRπ
−dN 2−3dN/2det(V )−1/2. �

Proof of Proposition 2.9. We only prove (2.18) and (2.17) since the other results are standard. To obtain
the bound (2.18), we first note that, by the results of Hairer & Mattingly (2011), there exists λ̃ > 0 such
that, for any function f ∈ L∞

Ks,Δt and 0<Δt �Δt∗ (the critical timestep being given by Lemmas 2.7
and 2.8), the following inequality holds for almost all (q, p) ∈ E :

∀m ∈ N, |([P�T/Δt�
Δt ]mf )(q, p)| � KKs(q, p) e−λ̃m‖f ‖L∞

Ks
.

For a general index n ∈ N, we write

n = mn

⌈
T

Δt

⌉
+ ñ, 0 � ñ �

⌈
T

Δt

⌉
− 1,

so that, using the contractivity property |PΔtf (q, p)| � |f (q, p)|,

|Pn
Δtf (q, p)| � KKs(q, p) e−λ̃mn‖f ‖L∞

Ks
.

Introducing λ= λ̃/T , the argument of the exponent reads

λ̃mn = λ(n − ñ)Δt
T

Δt

⌈
T

Δt

⌉−1

� λnΔt

2
− λT ,

when Δt is sufficiently small. This gives (2.18).
The moment estimate (2.17) is obtained by averaging (2.15) with respect to the invariant measure:∫

E
(PΔtKs) dμγ ,Δt � e−CaΔt

∫
E
Ks dμγ ,Δt + CbΔt.

Since μγ ,Δt is invariant, ∫
E
(PΔtKs) dμγ ,Δt =

∫
E
Ks dμγ ,Δt,

so that

(1 − e−CaΔt)

∫
E
Ks dμγ ,Δt � CbΔt,

which gives the desired result with R = 2Cb/Ca, for instance, provided Δt is sufficiently small. �

4.3 Some useful results

4.3.1 Expansion of the evolution operator. We give in this section an expression for the evolution
operator

Pt = etAM · · · etA1 ,

which can easily be compared with the evolution operator et(A1+···+AM ). We assume that the generators Ai

of all elementary dynamics are well-defined operators on a core X , with image in X (typically, X = S or
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a subset of this space such as S̃). We also assume that the elementary evolution semigroups etAi , as well
as Pt, are well defined on X with values in X . These semigroups may be extended to bounded operators
on an appropriate Banach space using the Hille–Yosida theorem, for instance (see Pazy, 1983). All
the operator equalities stated in this section have to be considered in the strong sense, namely T1 = T2

means T1ϕ = T2ϕ for all ϕ ∈ X .
It is easy to check that the operators A, B, C defined in (2.2) map S to itself. It is in fact possible to

analytically write down the action of the associated semigroups:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(etAϕ)(q, p)= ϕ(q + tM −1p, p),

(etBϕ)(q, p)= ϕ(q, p − t∇V(q)),

(etCϕ)(q, p)=
∫

RdN

ϕ

⎛
⎝q, e−γM −1tp +

(
1 − e−2γM −1t

β
M

)1/2

x

⎞
⎠ e−|x|2/2

(2π)dN/2
dx.

(4.10)

Coming back to the general case, the key building block for the subsequent numerical analysis is
the following equality:

Pt = P0 + t
dPt

dt

∣∣∣∣
t=0

+ t2

2

d2Pt

dt2

∣∣∣∣
t=0

+ · · · + tn

n!

dnPt

dtn

∣∣∣∣
t=0

+ tn+1

n!

∫ 1

0
(1 − θ)n

dn+1Ps

dsn+1

∣∣∣∣
s=θ t

dθ .

Now,

dPt

dt
= AM etAM · · · etA1 + etAM AM−1 etAM−1 · · · etA1 + · · · + etAM · · · etA1 A1

= T [(A1 + · · · + AM )Pt],

where T is a notation indicating that the operators with the smallest indices (or their associated semi-
groups) are farthest to the right. In fact, simple computations show that

dnPt

dtn
= T [(A1 + · · · + AM )

nPt].

Therefore, the following equality holds when applied to functions ϕ ∈ X :

Ptϕ = ϕ + t(A1 + · · · + AM )ϕ + t2

2
T [(A1 + · · · + AM )

2]ϕ + · · · + tn

n!
T [(A1 + · · · + AM )

n]ϕ

+ tn+1

n!

∫ 1

0
(1 − θ)nT [(A1 + · · · + AM )

n+1Pθ t]ϕ dθ . (4.11)

4.3.2 Baker-Campbell-Hausdorff formula. It is important to rewrite the various terms in the right-
hand side of (4.11) in a form more amenable to analytical computations. More precisely, it is convenient
to write the following equality in terms of operators defined on X :

T [(A1 + · · · + AM )
n] = (A1 + · · · + AM )

n + Sn,

where the operator Sn involves commutators [Ai, Aj], which can also be defined as operators on X with
values in X . In fact, the algebraic expressions of the operators Sn can be formally obtained from the
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Baker-Campbell-Hausdorff (BCH) formula for first-order splittings (see, for instance, Hairer et al.,
2006, Section III.4.2): for M = 3,

eΔtA3 eΔtA2 eΔtA1 = eΔtA, A= A1 + A2 + A3 + Δt

2
([A3, A1 + A2] + [A2, A1])+ · · · ,

and from the symmetric BCH formula for second-order involving three operators (obtained by compo-
sition of the standard BCH formula involving two operators):

eΔtA1/2 eΔtA2/2 eΔtA3 eΔtA2/2 eΔtA1/2 = eΔtA, (4.12)

with

A= A1 + A2 + A3 + Δt2

12

(
[A3, [A3, A2]] + [A2 + A3, [A2 + A3, A1]] − 1

2
[A2, [A2, A3]]

− 1

2
[A1, [A1, A2 + A3]]

)
+ · · ·

where we do not write down the expressions of the higher-order terms Δt2n (for n � 2). Let us insist
that these formulas are only formal (since the operators appearing in the argument of the exponential on
the right-hand side involve more and more derivatives), but nonetheless allow us to find the algebraic
expressions of Sn upon formally expanding the exponential as

eΔtA = Id +ΔtA + Δt2

2
A2 + · · ·

and identifying terms with the same powers of Δt in (4.11).

4.3.3 Approximate inverse operators. Consider an operator A defined on some core X (typically
some subspace of S), and whose inverse is also defined on X in the following sense: for any g ∈ X , there
exist f ∈ X such that Af = g. We denote by A−1g the element f ∈ X . At this stage, we do not assume
any boundedness in an appropriate operator norm for A−1 or some extension of it. We next consider
a perturbation ΔtαB for some exponent α � 1, where B is also defined on X and has values in X . In
the typical situations encountered in this article, B is not bounded with respect to A in an appropriate
operator norm since it may involve higher-order derivatives than A does. It is therefore impossible in
general to properly define the inverse of A +ΔtαB.

However, it is possible to introduce an approximate inverse, which we define as an operator QΔt,n

from X to X such that there exists an operator Q̃Δt,n from X to X for which the following equality holds
for any function f ∈ X :

(A +ΔtαB)QΔt,nf = f +Δt(n+1)αQ̃Δt,nf . (4.13)

To this end, we simply truncate the formal series expansion of the inverse of the operator A +
Δtα B = A(Id +Δtα A−1B), which formally reads A−1 −Δtα A−1BA−1 +Δt2α A−1BA−1BA−1 + · · · .
For instance, QΔt,1 = A−1 −Δtα A−1BA−1 and QΔt,2 = A−1 −Δtα A−1BA−1 +Δt2α A−1BA−1BA−1

indeed are operators from X to X satisfying (4.13), respectively, with n = 1 and n = 2.
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4.4 Proof of Theorem 2.13

We write the proof for the scheme associated with PγC,B,A
Δt = eγΔtC eΔtB eΔtA, the proof for the scheme

PγC,A,B
Δt following the same lines. The results for the other schemes are then obtained with the TU lemma

(Lemma 2.12). Without loss of generality, we perform the proof for a function ψ with average zero with
respect to μ (recovering the general case by adding a constant to ψ in the final expression).

Proof of (2.24). First, note that, by definition of the invariant measure μγ ,Δt, it holds that, for any
ϕ ∈ S, ∫

E

(
Id − PγC,B,A

Δt

Δt

)
ϕ dμγ ,Δt = 0. (4.14)

The next step is to choose the correction function f1,γ . Using the results of Section 4.3, a simple compu-
tation shows that

PγC,B,A
Δt = Id +ΔtLγ + Δt2

2
(L2

γ + S1)+Δt3R1,Δt, S1 = [C, A + B] + [B, A], (4.15)

where the subscript index 1 refers to the order of the splitting, and where all operators are understood
as operators on S. More precisely,

R1,Δt = 1

2

∫ 1

0
(1 − θ)2RθΔt dθ ,

where Rs is a finite linear combination of terms of the form Cγ esCBβesBAαesA with α,β, γ � 0 and
α + β + γ = 3. In any case, R1,Δt is a differential operator involving at most six derivatives, and with
smooth coefficients of at most polynomial growth. It is easily seen that R1,Δtψ is uniformly bounded in
some space L∞

Ks
(with s chosen sufficiently large) for Δt small enough when ψ ∈ S. Therefore, for any

ϕ ∈ S and f1,γ ∈ S̃,

∫
E

[(
Id − PγC,B,A

Δt

Δt

)
ϕ

]
(1 +Δtf1,γ ) dμ

= −
∫
E

[(
Lγ + Δt

2
(L2

γ + S1)+Δt2R1,Δt

)
ϕ

]
(1 +Δtf1,γ ) dμ

= −Δt
∫
E

(
1

2
S1ϕ + (Lγ ϕ)f1,γ

)
dμ−Δt2

∫
E

([
1

2
(L2

γ + S1)ϕ

]
f1,γ + (R1,Δtϕ)(1 +Δtf1,γ )

)
dμ.

The dominant term on the right-hand side can be written, using integration by parts,

∫
E

(
1

2
S1ϕ + (Lγ ϕ)f1,γ

)
dμ=

∫
E
ϕ

[
1

2
S∗

1 1 + L∗
γ f1,γ

]
dμ.

In view of (4.14), we choose the correction function in order to eliminate the dominant term:

L∗
γ f1,γ = − 1

2 S∗
1 1. (4.16)
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Relying on Theorem 2.3 and (2.7), the function f1,γ is a well-defined element from S̃ since the right-
hand side of (4.16) belongs to S̃ . A direct computation using integration by parts indeed shows that
S∗

1 1 ∈ S (see (4.20) below). The centring condition follows from the fact that 1 ∈ Ker(S1): indeed,

∫
E

S∗
1 1 dμ=

∫
E

S11 dμ= 0.

With the choice (4.16),

∫
E

[(
Id − PγC,B,A

Δt

Δt

)
ϕ

]
(1 +Δtf1,γ ) dμ

= −Δt2
∫
E

([
1

2
(L2

γ + S1)ϕ

]
f1,γ + (R1,Δtϕ)(1 +Δtf1,γ )

)
dμ. (4.17)

We would like, at this stage, to replace the observable ϕ appearing on the left-hand side by the function

(
Id − PγC,B,A

Δt

Δt

)−1

ψ .

However, we do not have any control on the derivatives of this function (Corollary 2.10 allows us to
control the norm of the function, not of its derivatives), whereas such a control is required to bound the
remainder terms. In order to use an approximate inverse operator involving iterated powers of L−1

γ (see

Section 4.3.3), we first need to make sure that all operators are defined on S̃, with values in S̃. This is
the case for Lγ and its inverse, but not for the other operators appearing in (4.15), which have values
in S. We therefore project out averages with respect to μ. Define to this end the projector

Π⊥f = f −
∫
E

f dμ, (4.18)

which maps S to S̃. Then, for a function ϕ ∈ S̃ (for which Π⊥ϕ = ϕ), (4.17) can be rewritten as

∫
E

[
Π⊥ Id − PγC,B,A

Δt

Δt
Π⊥ϕ

]
(1 +Δtf1,γ ) dμ

= 1

Δt

∫
E

PγC,B,A
Δt ϕ dμ−Δt2

∫
E

([
1

2
(L2

γ + S1)ϕ

]
f1,γ + (R1,Δtϕ)(1 +Δtf1,γ )

)
dμ,

where we have used the fact that f1,γ is of average zero with respect to μ. On the other hand, (4.14) may
be rewritten as ∫

E
Π⊥ Id − PγC,B,A

Δt

Δt
Π⊥ϕ dμγ ,Δt = 1

Δt

∫
E

PγC,B,A
Δt ϕ dμ.
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Therefore,

∫
E

[
Π⊥ Id − PγC,B,A

Δt

Δt
Π⊥ϕ

]
(1 +Δtf1,γ ) dμ−

∫
E
Π⊥ Id − PγC,B,A

Δt

Δt
Π⊥ϕ dμγ ,Δt

= −Δt2
∫
E

([
1

2
(L2

γ + S1)ϕ

]
f1,γ + (R1,Δtϕ)(1 +Δtf1,γ )

)
dμ. (4.19)

As a consequence of the presence of the projection Π⊥, all of the operators in (4.15) are restricted to
the range of Π⊥, i.e., the following equality holds on S̃:

−Π⊥ Id − PγC,B,A
Δt

Δt
Π⊥ =Lγ + Δt

2
(L2

γ +Π⊥S1Π
⊥)+Δt2Π⊥R1,ΔtΠ

⊥.

We therefore introduce the operator

Q1,Δt = −L−1
γ + Δt

2
(Π⊥ + L−1

γ Π
⊥S1Π

⊥L−1
γ ),

which is a well-defined operator from S̃ to S̃ such that(
Π⊥ Id − PγC,B,A

Δt

Δt
Π⊥

)
Q1,Δt =Π⊥ +Δt2Z1,Δt,

where Z1,Δt maps S to S. We finally replace ϕ by Q1,Δtψ in (4.19). This gives (recall thatΠ⊥ψ =ψ by
assumption) ∫

E
ψ (1 +Δtf1,γ ) dμ−

∫
E
ψ dμΔt =Δt2

∫
E

[(R̃1,Δtψ)f1,γ + R̂1,Δtψ] dμ,

where the functions R̃1,Δtψ , R̂1,Δtψ belong to S when ψ does. The integral on the right-hand side is
uniformly bounded for small Δt (using the fact that the functions appearing in the integral are in S and
relying on Proposition 2.9). This gives (2.24) for the splitting scheme PγC,B,A

Δt . �

Proof of (2.25). The function f γC,B,A
1 ∈ S̃ (denoted by f1,γ above) is uniquely determined by the

equation

L∗
γ f γC,B,A

1 = −1

2
S∗

1 1 = −1

2
([C, A + B] + [B, A])∗1,

∫
E

f γC,B,A
1 dμ= 0,

where we have used [L2
γ ]∗1 = 0 to simplify the right-hand side. Now, [C, A + B]∗ = [C, A + B] since

C∗ = C and (A + B)∗ = −(A + B). Therefore, [C, A + B]∗1 = 0. In addition,

[B, A]∗1 = −(A + B)∗g = (A + B)g,

since A∗ = −A + g and B∗ = −B − g. Therefore,

S∗
1 1 = (A + B)g. (4.20)

This gives the first expression in (2.25).
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To obtain the expressions of f A,γC,B
1 and f B,A,γC

1 , we use the TU lemma, where the operators UΔt,
respectively, read eγΔtC eΔtB = Id +Δt(B + γC)+Δt2RΔt and eγΔtC (which preserves μ). We actually
are in a situation similar to (2.23):

f B,A,γC
1 = f γC,B,A

1 , f A,γC,B
1 = f γC,B,A

1 + B∗1.

The expressions for the first-order corrections when the operators A and B are exchanged are obtained
by noting that the sign of S∗

1 1 is changed and that f B,γC,A
1 = f γC,A,B

1 + A∗1. �

Remark 4.1 Let us highlight the structure of the proof, in order to make clear which technical exten-
sions are required in order to state error estimates for other dynamics:

(i) first, an expansion of the evolution operator PΔt in powers of Δt has to be written out. This
step is usually quite simple although sometimes algebraically involved. The expansion of PΔt

is the same as the one used to prove weak error estimates;

(ii) secondly, good control on the resolvent has to be established, such as the stability result pro-
vided by Theorem 2.3. This step may already be quite complicated since it involves proving
that μ is the unique invariant measure, and that the resolvent can be inverted for functions with
average zero with respect to μ. A typical way to do so is to establish decay properties of the
semigroup. Such decay estimates may be hard to obtain for degenerate noises;

(iii) the existence of an invariant measure μΔt for the numerical scheme has to be demonstrated
(uniqueness is not required), typically by finding a Lyapunov function. Again, this may be
difficult if the dynamics is highly degenerate.

Once the above steps have been performed, the correction function can be identified as the solution of
a Poisson equation, by comparing the average of (Id − PΔt)ϕ under μ and μΔt. The remainder of the
proof allows one to state error estimates for any smooth function (and not just functions in the range of
Id − PΔt) using appropriate pseudo-inverses.

4.5 Proof of Proposition 2.15

We use a very standard strategy: first, we propose an ansatz for the correction term f1,γ as

f1,γ = f 0
1 + γ f 1

1 + γ 2f 2
1 + · · · ,

then identify the two leading-order terms in this expression and finally use the resolvent estimate of
Theorem 2.4 to conclude. Note that our ansatz is not obvious since the estimate of Theorem 2.4 shows
that, in general, a leading-order correction term of order 1/γ should be considered. It turns out, however,
that, due to the specific structure of the right-hand side of (2.25) (namely the fact that the right hand
is at leading order in γ , the image under the Hamiltonian operator of some function), such a divergent
leading-order term is not necessary.

Consider, for instance, the case when f1,γ is f γC,B,A
1 . This function solves

[−(A + B)+ γC]f γC,B,A
1 = −1

2
(A + B)g,

∫
E

f γC,B,A
1 dμ= 0,
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so that we consider the ansatz f γC,B,A
1 = g/2 + γ f 1

1 + · · · . Identifying terms with same powers of γ , we
see that the correction term f 1

1 should satisfy

(A + B)f 1
1 = 1

2
Cg = β

2
pTM −2∇V .

Possible solutions are defined up to elements of the kernel of A + B (which contains function of the
form ϕ ◦ H). One possible choice is to set f 1

1 = βpTM −2p/4 + c1
1, where the constant c1

1 is chosen in
order for f 1

1 to have a vanishing average with respect to μ. Then,

L∗
γ

(
f γC,B,A
1 − g

2
− γ f 1

1

)
= γ 2Cf 1

1 .

In view of Theorem 2.4, this implies that there exists a constant K > 0 such that∥∥∥f γC,B,A
1 − g

2
− γ f 1

1

∥∥∥
L2(μ)

� Kγ

for γ � 1, which gives the desired estimate on f γC,B,A
1 . Similar computations give the estimate on f γC,A,B

1 ,
while the estimates on the remaining functions are obtained from (2.25).

4.6 Proof of Theorem 2.16

The proof follows the same lines as the proof for the first-order splitting schemes (see Section 4.4). We
present only the required modifications. We write the proof for PγC,B,A,B,γC

Δt since the correction term has
a much simpler right-hand side than PA,B,γC,B,A

Δt .

Proof of (2.26). Expanding up to terms of orderΔt5, the formal expression of PγC,B,A,B,γC
Δt given by the

BCH expansion (4.12), we obtain the following equality (as operators on S):

PγC,B,A,B,γC
Δt = Id +Δt(Lγ +Δt2S2)+ Δt2

2
(L2

γ +Δt2(Lγ S2 + S2Lγ ))+ Δt3

6
L3
γ

+ Δt4

24
L4
γ +Δt5R2,Δt,

where

R2,Δt = 1

24

∫ 1

0
(1 − θ)4RθΔt dθ ,

Rs being a finite linear combination of terms of the form Cγ esCBβesBAαesA with α,β, γ � 0 and
α + β + γ = 5; and

S2 = 1
12 (S2,0 + γ S2,1 + γ 2S2,2), (4.21)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S2,0 = [A, [A, B]] − 1
2 [B, [B, A]],

S2,1 = [A + B, [A + B, C]],

S2,2 = − 1
2 [C, [C, A + B]].
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Therefore,

Id − PγC,B,A,B,γC
Δt

Δt
= −Lγ − Δt

2
L2
γ −Δt2

(
1

6
L3
γ + S2

)
− Δt3

2

(
1

12
L4
γ + S2Lγ + Lγ S2

)
−Δt4R2,Δt.

(4.22)
We choose f γC,B,A,B,γC

2 ∈ S̃ as the unique solution of the Poisson equation L∗
γ f γC,B,A,B,γC

2 = −S∗
2 1 (which

is indeed well posed since the right-hand side has a vanishing average with respect to μ since it is in the
image of S2, and is regular as shown by (4.23) below). Then, for a function ϕ ∈ S,

∫
E

(
Id − PγC,B,A,B,γC

Δt

Δt

)
ϕ(1 +Δt2f γC,B,A,B,γC

2 ) dμ

= −Δt3

2

∫
E

S2Lγ ϕ + (L2
γ ϕ)f

γC,B,A,B,γC
2 dμ−Δt4

∫
E

[R̃2,Δtϕ + R̂2,Δtϕf γC,B,A,B,γC
2 ] dμ,

where many terms cancel by the invariance of μ by (Lαγ )∗ (for integer powers α). The leading-order
term on the right-hand side in fact vanishes since it can be rewritten as

∫
E

S2Lγ ϕ + L2
γ ϕf γC,B,A,B,γC

2 dμ=
∫
E
Lγ ϕ(S∗

2 1 + L∗
γ f γC,B,A,B,γC

2 ) dμ= 0.

Therefore,

∫
E

(
Id − PγC,B,A,B,γC

Δt

Δt

)
ϕ(1 +Δt2f γC,B,A,B,γC

2 ) dμ= −Δt4
∫
E

[R̃2,Δtϕ + R̂2,Δtϕf γC,B,A,B,γC
2 ] dμ.

We then restrict the above equality to functions ϕ ∈ S̃ , project out the average with respect to μ of the
first factor in the integral on the left using the projector Π⊥ introduced in (4.18), and finally replace ϕ
by Q2,Δtψ where Q2,Δt is an approximate inverse satisfying

Π⊥ Id − PγC,B,A,B,γC
Δt

Δt
Π⊥Q2,Δt =Π⊥ +Δt4ZΔt.

The proof is concluded as in Section 4.4. �

Proof of (2.27). To evaluate the expression S∗
2 1, we need to compute the actions of the formal adjoints

of the various commutators. Using C1 = (A + B)1 = 0 and

C∗ = C, A∗ = −A + g, B∗ = −B − g,

straightforward computations show that S∗
2,21 = S∗

2,11 = 0. In addition, since

A(g2)= 2gAg, B(g2)= 2gBg,
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it follows that

([A, [A, B]])∗1 = (A2B − 2ABA + BA2)∗1 = (B∗A∗ − 2A∗B∗ − (A∗)2)g

= ((B + g)(A − g)− 2(A − g)(B + g)− (A − g)2)g

= (BA − 2AB − A2)g = −(A + B)Ag,

where we have used ABg = BAg (as can be checked by a direct computation). A similar computation
shows that ([B, [B, A]])∗1 = (−AB + 2BA + B2)g = (A + B)Bg = ABg (since B2g = 0 by a direct veri-
fication). Finally,

S∗
2 1 = − 1

12
(A + B)

(
A + B

2

)
g. (4.23)

To obtain the expression of f A,B,γC,B,A
2 , we use the TU lemma with the operator

UΔt = eγΔtC/2 eΔtB/2 eΔtA/2.

A simple computation shows that

U∗
Δt1 = 1 + Δt2

8
(A + B)g +Δt3R∗

Δt1.

In fact, it can be shown that theΔt3 term does not pollute the remainder since the next-order correction in
the invariant measure has to be of order Δt4 (see (2.26)). The expressions for f γC,A,B,A,γC

2 and f B,A,γC,A,B
2

are obtained in a similar manner. �

4.7 Proof of Corollary 2.17

The proof relies on the results of Theorem 2.16 and the TU lemma (Lemma 2.12). More precisely, the
error estimate (2.28) is established by following the same lines of proof as for second-order splitting
schemes, except that the contributions of order Δt3 do not vanish. We then use the TU lemma by
considering the GLA evolution as the reference, and express the invariant measure of second-order
splitting schemes in terms of the invariant measure of the GLA scheme. For instance, consider PγC,B,A,B

Δt

and PγC,B,A,B,γC
Δt , in which case UΔt = eγΔtC/2. Then,∫
E
ψ dμγC,B,A,B,γC

Δt

=
∫
E
(UΔtψ) dμγC,B,A,B

Δt

=
∫
E

UΔtψ dμ+Δt2
∫
E
(UΔtψ)f

γC,B,A,B
2 dμ+Δt3

∫
E
(UΔtψ)f

γC,B,A,B
3 dμ+Δt4rψ ,γ ,Δt

=
∫
E
ψ dμ+Δt2

∫
E
ψ f γC,B,A,B

2 dμ+Δt3
∫
E
ψ

(
f γC,B,A,B
3 + γ

2
Cf γC,B,A,B

2

)
dμ+Δt4r̃ψ ,γ ,Δt,

where we have used the invariance of μ by UΔt. The comparison with (2.26–2.27) gives the desired
result.
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4.8 Approximation of integrated correlation functions

Proof of Theorem 2.19. The proof makes use of the projection operator defined on S as (com-
pare (4.18))

Π⊥
Δtϕ = ϕ −

∫
E
ϕ dμΔt.

The range ofΠ⊥
Δt is contained in the set of functions with average zero with respect to the invariant mea-

sure μΔt of the numerical scheme. We first introduce the invariant measure for the numerical scheme,
using the fact that −L−1

γ ψ has zero average with respect to μ:∫
E
(−L−1

γ ψ)ϕ dμ=
∫
E
(−L−1

γ ψ)Π
⊥
Δtϕ dμ

=
∫
E
(−L−1

γ ψ)Π
⊥
Δtϕ dμΔt +Δtαrψ ,ϕ

Δt ,

=
∫
E
Π⊥
Δt(−L−1

γ ψ)Π
⊥
Δtϕ dμΔt +Δtαrψ ,ϕ

Δt , (4.24)

where rψ ,ϕ
Δt is uniformly bounded for Δt sufficiently small by (2.32). In addition, by (2.33),

−Π⊥
ΔtL−1

γ ψ = −Π⊥
Δt

(
Δt

+∞∑
n=0

Pn
Δt

)
Π⊥
Δt

(
Id − PΔt

Δt

)
L−1
γ ψ

=Δt

(+∞∑
n=0

[Π⊥
ΔtPΔtΠ

⊥
Δt]

n

)
(Lγ +ΔtS1 + · · · +Δtα−1Sα−1 +ΔtαR̃α,Δt)L−1

γ ψ ,

=Δt
+∞∑
n=0

[Π⊥
ΔtPΔtΠ

⊥
Δt]

nψ̃Δt,α +Δtα
(

Id − PΔt

Δt

)−1

Π⊥
ΔtR̃α,ΔtL−1

γ ψ .

Note that the sum on the right-hand side is well defined in view of the decay estimates (2.18). Plugging
the above equality in (4.24) leads to

∫
E
(−L−1

γ ψ)ϕ dμ=Δt
∫
E

+∞∑
n=0

(Π⊥
ΔtP

n
Δtψ̃Δt,α)(Π

⊥
Δtϕ) dμΔt

+Δtα
∫
E

((
Id − PΔt

Δt

)−1

Π⊥
ΔtR̃α,ΔtL−1

γ ψ

)
Π⊥
Δtϕ dμΔt +Δtαrψ ,ϕ

Δt .

The second term on the right-hand side is uniformly bounded in view of the moment estimates on μΔt,
the resolvent bounds provided by Corollary 2.10 and the uniform boundedness of the remainder R̃α,Δtf
for a given, smooth function f . Since

∫
E

+∞∑
n=0

(Π⊥
ΔtP

n
Δtψ̃Δt,α)(Π

⊥
Δtϕ) dμΔt =

∫
E

+∞∑
n=0

(Pn
Δtψ̃Δt,α)ϕ dμΔt =

+∞∑
n=0

EΔt(ψ̃Δt,α(q
n, pn)ϕ(q0, p0)),

(2.34) finally follows. �
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Proof of Corollary 2.20. The idea is to start from (2.34) and to appropriately rewrite the first-order
correction term. We use to this end (2.34) withψ replaced by its first-order correction (ψΔt,2 − ψ)/Δt =
S1L−1

γ ψ , and discard terms of order Δt2:

∫ +∞

0
E(S1L−1

γ ψ(qt, pt)ϕ(q0, p0)) dt =Δt
+∞∑
n=0

EΔt(S1L−1
γ ψ(q

n+1, pn+1)ϕΔt,0(q
0, p0))+Δt rψ ,ϕ

Δt ,

where rψ ,ϕ
Δt is uniformly bounded for Δt sufficiently small and ϕΔt,0 =Π⊥

Δtϕ. On the other hand, using
S1 =L2

γ /2,

∫ +∞

0
E(S1L−1

γ ψ(qt, pt)ϕ(q0, p0)) dt = −
∫
E
L−1
γ S1L−1

γ ψ ϕ dμ= −1

2

∫
E
ψϕ dμ,

so that

Δt
+∞∑
n=0

EΔt((S1L−1
γ ψ)Δt,0(q

n+1, pn+1)ϕ(q0, p0))

=Δt
+∞∑
n=0

EΔt(S1L−1
γ ψ(q

n+1, pn+1)Π⊥
Δtϕ(q

0, p0))

=
∫ +∞

0
E(S1L−1

γ ψ(qt, pt)Π
⊥
Δtϕ(q0, p0)) dt −Δt rψ ,ϕ

Δt

= −1

2

∫
E
ψ Π⊥

Δtϕ dμ−Δt rψ ,ϕ
Δt = −1

2

∫
E
ψΔt,0ϕ dμ−Δt rψ ,ϕ

Δt

= −1

2
EΔt(ψΔt,0ϕ)+Δt r̃ψ ,ϕ

Δt .

This gives (2.36). �

4.9 Proof of Theorem 2.21

We write the proof for the evolution operator PγC,A,B,A,γC
Δt first, and mention then how to extend the

result to PB,A,γC,A,B
Δt using the TU lemma. The proofs for PγC,B,A,B,γC

Δt and PA,B,γC,B,A
Δt are very similar, so

we only briefly mention the required modifications. By default, all operators appearing in this section
are defined on the core S.

4.9.1 Reduction to a limiting operator up to exponentially small terms. Let us introduce the evo-
lution operator corresponding to the standard position Verlet scheme: Pham,Δt = eΔtA/2 eΔtB eΔtA/2, so
that PγC,A,B,AγC

Δt = eγΔtC/2Pham,Δt eγΔtC/2. On the other hand, we have the following convergence result,
whose proof is postponed to the end of the section.

Lemma 4.2 Fix s∗ ∈ N
∗. Then, there exist K,α > 0 such that, for any 1 � s � s∗ and any t � 0,

‖eγ tC − π‖B(L∞
Ks
) � K e−αγ t.
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This suggests we should consider the limiting operator P∞,Δt = πPham,Δtπ and write

PγC,A,B,A,γC
Δt − P∞,Δt = (eγΔtC/2 − π)Pham,Δtπ + eγΔtC/2Pham,Δt(e

γΔtC/2 − π). (4.25)

For a given smooth function ϕ ∈ S which depends only on the position variable q,∫
E
(Id − PγC,A,B,A,γC

Δt )ϕ dμγ ,Δt = 0 =
∫
E
(Id − P∞,Δt)ϕ dμγ ,Δt + r1

ϕ,γ ,Δt, (4.26)

with the remainder

r1
ϕ,γ ,Δt =

∫
E
(P∞,Δt − PγC,A,B,A,γC

Δt )ϕ dμγ ,Δt.

On the other hand,∫
E

[(Id − PγC,B,A,B,γC
Δt )ϕ](1 +Δt2f2,∞) dμ=

∫
E

[(Id − P∞,Δt)ϕ](1 +Δt2f2,∞) dμ+ r2
ϕ,γ ,Δt, (4.27)

with the remainder

r2
ϕ,γ ,Δt =

∫
E

[(P∞,Δt − PγC,B,A,B,γC
Δt )ϕ](1 +Δt2f2,∞) dμ.

The idea is that the remainders r1
ϕ,γ ,Δt and r2

ϕ,γ ,Δt are exponentially small when the function ϕ is suffi-
ciently smooth (see below for a more precise discussion, once ϕ has been replaced by QΔtψ with QΔt an
appropriate approximate inverse). Therefore, the leading-order terms in the error estimate are obtained
by considering the limiting operator P∞,Δt only.

4.9.2 Error estimates for the limiting operator P∞,Δt. We now study the error estimates associated
with P∞,Δt, following the strategy used in Section 4.4. We first use the results of Section 4.3.1 with
M = 3, A1 = A3 = A/2 and A2 = B to expand Pham,Δt so that

P∞,Δt = π +Δtπ(A + B)π + Δt2

2
π(A + B)2π + Δt3

6
πS3π + Δt4

24
πS4π + Δt5

120
πS5π +Δt6πRΔtπ ,

(4.28)
with Si = T [(A1 + A2 + A3)

i]. To give more precise expressions of the operators appearing on the right-
hand side of the above equality, we use the following facts:

∀n ∈ N, Bnπ = 0, πA2n+1π = 0, (4.29)

and
∀n � m + 1, BnAmπ = 0. (4.30)

In addition,

πA2π = 1

β
Δqπ , BAπ = −∇V · ∇qπ .

Using these rules in (4.28) leads to

π(A + B)π = 0, π(A + B)2π = π(A2 + BA)π =Lovdπ . (4.31)
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The operator S3 is a combination of terms of the form AaBbAc with a + b + c = 3 and a, b, c ∈ N. In
view of (4.29–4.30), only the terms with c � 1 and b � c have to be considered, so that only BA2 and
ABA remain. A simple computation shows that BA2πϕ and ABAπϕ are functions linear in p, so that
πBA2π = πABAπϕ = 0. Finally, πS3π = 0. A similar reasoning shows that πS5π = 0 and that many
terms appearing in the expression of S4 also disappear.

Plugging the above results in (4.28) and introducing h =Δt2/2,

P∞,Δt = π + hπLovdπ + h2

6
π

(
A4 + 3

2
A2BA + 3

2
ABA2 + 3

2
B2A2 + 1

2
BA3

)
π + h3R∞,Δt.

Using

πA4πϕ = 3

β2
Δ2

qπϕ = 3(πA2π)2ϕ,

πBA3πϕ = − 3

β
∇V · ∇q(Δqπϕ)= 3πBAπA2πϕ,

πB2A2πϕ = 2(∇V)T(∇2
qπϕ)∇V ,

πABA2πϕ = − 2

β
(∇2V : ∇2ϕ + ∇V · ∇(Δϕ)),

πA2BAπϕ = − 1

β
(2∇2V : ∇2ϕ + ∇V · ∇(Δϕ)+ ∇(ΔV) · ∇ϕ)= πA2πBAπϕ,

(4.32)

it follows(
A4 + 3

2
A2BA + 3

2
ABA2 + 3

2
B2A2 + 1

2
BA3

)
πϕ

= 3

β2
Δ2

qϕ − 6

β
∇2V : ∇2ϕ − 6

β
∇V · ∇(Δϕ)− 3

2β
∇(ΔV) · ∇ϕ + 3(∇V)T(∇2ϕ)∇V .

A straightforward computation shows that

L2
ovdϕ = 1

β2
Δ2

qϕ − 2

β
∇2V : ∇2ϕ − 2

β
∇V · ∇(Δϕ)− 1

β
∇(ΔV) · ∇ϕ

+ (∇V)T(∇2ϕ)∇V + (∇V)T(∇2V)∇ϕ.

Therefore,

π
(
A4 + 3

2 A2BA + 3
2 ABA2 + 3

2 B2A2 + 1
2 BA3

)
π = 3(L2

ovd + D)π ,

with

Dϕ = 1

2β
∇(ΔV) · ∇ϕ − (∇V)T(∇2V)∇ϕ. (4.33)

In conclusion,

P∞,Δt = π + hLovd + h2

2
(L2

ovd + D)π + h3R∞,Δt. (4.34)
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Let us emphasize that this operator acts on functions of q (we define it on S ∩ Ker(π)= C∞(M))
and that π is the identity operator for functions which are independent of p, and note that, for any
φ ∈ C∞(M),

π − P∞,Δt

h
φ = −Lovdφ − h

2
(L2

ovd + D)φ − h2RΔtφ. (4.35)

In fact, proceeding as in Section 4.4, we project out averages with respect to μ(dq) in order to properly
define approximate inverses. Introduce to this end the projector

Π
⊥
φ = φ −

∫
M
φ(q) μ(dq)

defined on the core C∞(M). The equality (4.35) then implies the following equality on C∞(M) ∩
Ran(Π

⊥
):

Π
⊥π − P∞,Δt

h
Π

⊥ = −Lovd − h

2

(
L2

ovd +Π
⊥

DΠ
⊥) − h2Π

⊥
RΔtΠ

⊥
.

An approximate inverse of the operator appearing on the left-hand side of the above equality is thus

Qh = −L−1
ovd + h

2

(
Π

⊥ + L−1
ovdΠ

⊥
DΠ

⊥L−1
ovd

)
.

Denote by μ∞,Δt(dq) the invariant measure of the Markov chain generated by the limiting method
P∞,Δt. Proceeding as in Section 4.4 by first identifying the leading-order correction f2,∞, projecting out

averages with respect to μ(dq) using Π
⊥

and replacing Π
⊥
ϕ by Qhψ , the equality (4.34) allows us to

obtain ∫
M
ψ(q) μ∞,Δt(dq)=

∫
M
ψ(q) μ(dq)+Δt2

∫
M
ψ(q)f2,∞(q) μ(dq)+Δt4rΔt,ψ , (4.36)

where f2,∞ is the unique solution of

Lovd f2,∞ = − 1
4 D∗1. (4.37)

A more explicit expression can be obtained by noting that

Dϕ = 1

2
∇

(
1

β
ΔV − |∇V |2

)
· ∇ϕ,

so that (recalling Lovd = −β−1∇∗∇ = −β−1 ∑dN
i=1 ∂

∗
qi
∂qi where the formal adjoints are taken on L2(μ))

∫
M
ϕ(D∗1) dμ=

∫
M

Dϕ dμ= 1

2

∫
M
ϕ∇∗∇

(
1

β
ΔV − |∇V |2

)
dμ

= −1

2

∫
M
ϕ Lovd(ΔV − β|∇V |2) dμ.

Since f2,∞ should have a vanishing average with respect to μ, this proves that

f2,∞(q)= 1
8 (ΔV − β|∇V |2)
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In fact, it is possible for the scheme considered here to precisely determine the leading-order cor-
rection for numerical averages by noting that

1

β

∫
M
Δϕ dμ= −

∫
M
ϕ(ΔV − β|∇V |2) dμ, (4.38)

so that finally

∫
M
ψ(q) μ∞,Δt(dq)=

∫
M
ψ(q) μ(dq)− Δt2

8β

∫
M
Δψ(q) μ(dq)+Δt4rΔt,ψ .

4.9.3 Conclusion of the proof. We now come back to (4.26–4.27) and replace Π
⊥
ϕ by Qhψ :

∫
E
ψ dμγ ,Δt =

∫
E
ψ(1 +Δt2f2,∞) dμ+ r1

ψ ,γ ,Δt + r2
ψ ,γ ,Δt +Δt4rΔt,ψ , (4.39)

where rΔt,ψ is the same as in (4.36), while

r1
ψ ,γ ,Δt =

∫
E
(P∞,Δt − PγC,A,B,A,γC

Δt )Qhψ dμγ ,Δt,

r2
ψ ,γ ,Δt =

∫
E

[(P∞,Δt − PγC,B,A,B,γC
Δt )Qhψ](1 +Δt2f2,∞) dμ.

We then integrate with respect to momenta in (4.39), and bound the remainders by K e−cγΔt in view
of the decomposition (4.25) and Lemma 4.2 (the operators Pham,Δt and eγΔtC/2 being bounded on L∞

Ks

uniformly in Δt).

4.9.4 Proof of (2.37) for f B,A,γC,A,B
2,∞ . We set

Uγ ,Δt = eγΔtC/2 eΔtA/2 eΔtB/2, Tγ ,Δt = eΔtB/2 eΔtA/2 eγΔtC/2,

so that PB,A,γC,A,B
Δt = Tγ ,ΔtUγ ,Δt while PγC,A,B,A,γC

Δt = Uγ ,ΔtTγ ,Δt. By the TU lemma,

∫
E
ψ dμB,A,γC,A,B

Δt =
∫
E
(Uγ ,Δtψ) dμγC,A,B,A,γC

Δt

=
∫
E
(U∞,Δtψ) dμγC,A,B,A,γC

Δt +
∫
E
(Uγ ,Δt − U∞,Δt)ψ dμγC,A,B,A,γC

Δt , (4.40)

where we have introduced U∞,Δt = π eΔtA/2 eΔtB/2. The second term on the right-hand side can be
bounded by K e−cγΔt in view of Lemma 4.2 and the moment estimate (2.17). For the first term in
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the right-hand side of (4.40), we use (4.39) and the following expansion (using the rules (4.29–4.30)):
for ψ ∈ S,

U∞,Δtψ = U∞,Δtπψ =ψ + Δt2

8
πA2πψ +Δt4r̃ψ ,Δt =ψ + Δt2

8β
Δψ +Δt4r̃ψ ,Δt,

where the remainder r̃ψ ,Δt is uniformly bounded for Δt sufficiently small. Therefore,

∫
E
(U∞,Δtψ) dμγC,A,B,A,γC

Δt =
∫
E
ψ(1 +Δt2f2,∞) dμ+ Δt2

8β

∫
E
Δψ dμ+ r̂ψ ,γ ,Δt,

where f2,∞ is given in (4.9.2). The remainder r̂ψ ,γ ,Δt is the sum of terms of order Δt4 and others which
can be bounded by K e−cγΔt. We conclude by resorting to (4.38) to compute the formal adjoint of the
operator Δq on L2(μ).

4.9.5 Proof of (2.37) for f γC,B,A,B,γC
2,∞ and f A,B,γC,B,A

2,∞ . We mimic the above proof for the evolution

operator PγC,B,A,B,γC
Δt . The equality (4.28) still holds, but the operator S4 now reads

S4 = A4 + 2BA2 + 3

2
B2A2,

so that

Dϕ = 2

β
∇2V : ∇2ϕ + 1

β
∇(ΔV) · ∇ϕ − ∇V T(∇2V)∇ϕ.

A simple computation shows that∫
M

Dϕ dμ= − 1

β

∫
M

∇
(
ΔV − β

2
|∇V |2

)
· ∇ϕ dμ=

∫
M

Lovd

(
ΔV − β

2
|∇V |2

)
ϕ dμ,

so that, in view of (4.37),

f γC,B,A,B,γC
2,∞ = −1

4

(
ΔV − β

2
|∇V |2 − aβ,V

2

)
.

Note that the constant added on the right-hand side makes sure that the right-hand side has a vanishing
average with respect to μ

The expression of f A,B,γC,B,A
2,∞ is obtained via the TU lemma, introducing the limiting operator

U∞,Δtπ = π eΔtB/2 eΔtA/2π = π + Δt2

8
π(A2 + 2BA)π +Δt4RΔt,

so that

f A,B,γC,B,A
2,∞ = f γC,B,A,B,γC

2,∞ + 1
8 (π(A

2 + 2BA)π)∗1 = f γC,B,A,B,γC
2,∞ + 1

8 (πBAπ)∗1 = − 1
8

(
ΔV − aβ,V

)
.

Let us conclude this section with the proof of Lemma 4.2.
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Proof of Lemma 4.2. The conclusion follows, for instance, by an application of Rey-Bellet (2006,
Theorem 8.7), considering as a reference dynamics the Ornstein–Uhlenbeck process

dpt = −M −1pt dt +
√

2γ

β
dWt

with generator C defined on functions of S which are independent of q (recall that the unique invariant
probability measure of this process is κ(dp)). To apply the theorem, we need to show that Ks is a
Lyapunov function for any s � 1. We compute

CKs =
(

−2spTp + 2s(dN + 2s − 2)

β

)
|p|2(s−1) � −Ks + bs

for an appropriate constant bs � 0. This shows the existence of constants Rs,αs such that∣∣∣∣(etCf )(p)−
∫

RdN

f (p) κ(dp)

∣∣∣∣� Rs e−αst‖f ‖L∞
Ks
(dp)Ks(p),

where the notation L∞
Ks
(dp) emphasizes that the supremum is taken over a function of the momentum

variable only. The desired result now follows by applying the above bound to the function ψ(q, ·) for
any element ψ ∈ L∞

Ks
, and taking the supremum over q. �

4.10 Proof of Proposition 2.22

Recall that we set M = Id for overdamped limits. We consider first f γC,B,A,B,γC
2 , which satisfies (2.27).

Let us first compute the right-hand side. Since

[(A + 1
2 B)g] = β(pT(∇2V)p − 1

2 |∇V |2),
a simple computation shows that

g̃ = 1

12
(A + B)

[(
A + 1

2
B

)
g

]
= β

12
[(∇3V) : (p ⊗ p ⊗ p)− 3pT(∇2V)∇V ].

Note that the above function has average zero with respect to κ . We then apply Theorem 2.5 to obtain

‖f γC,B,A,B,γC
2 − L−1

ovdπ(A + B)C−1g̃‖H1(μ) �
K

γ
.

Since

C[(∇3V) : (p ⊗ p ⊗ p)] = −3(∇3V) : (p ⊗ p ⊗ p)+ 6

β
pT∇(ΔV),

it is easily checked that

C−1g̃ = − β

36
(∇3V) : (p ⊗ p ⊗ p)− 1

6
pT∇(ΔV)+ β

4
pT(∇2V)∇V

= − β

36
A3πV + Aπ

(
−1

6
(ΔV)+ β

8
|∇V |2

)
.
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To compute π(A + B)C−1g̃, we rely on (4.31) and (4.32) and obtain

π(A + B)C−1g̃ = − 1

12

(
1

β
Δ2V − ∇V · ∇(ΔV)

)
+ Lovd

(
−1

6
(ΔV)+ β

8
|∇V |2

)

=Lovd

(
−1

4
ΔV + β

8
|∇V |2

)
.

This allows us to conclude that the limit of f γC,B,A,B,γC
2 is the argument of the operator Lovd in the

previous line, up to an additive constant chosen to ensure that f γC,B,A,B,γC
2 has a vanishing average

with respect to μ (which turns out to be aβ,V/8). We deduce the limit for f A,B,γC,B,A
2 with (2.27) since

(A + B)g = pT(∇2V)p − |∇V |2.
The expressions for the limits of f γC,A,B,AγC

2 and f B,A,γC,A,B
2 are obtained in a similar fashion.

4.11 Linear response theory

4.11.1 Definition of the mobility in (3.4). We briefly sketch the discussion in Stoltz (2012,
Section 3.1) (see, in particular, Theorem 3.1 in this reference). Hypoellipticity arguments show that
the measure μγ ,η has a smooth density with respect to the Lebesgue measure. It, moreover, formally
satisfies the Fokker–Planck equation

(Lγ + ηL̃)∗hγ ,η = 0, μγ ,η(dq dp)= hγ ,η(q, p)μ(dq dp),
∫
E

dμγ ,η = 1. (4.41)

This equation can be given a rigorous meaning when η is sufficiently small. We rely on the following
result (proved at the end of this section), which is itself based on the fact that (L∗

γ )
−1 can be extended

to a bounded operator on H0 (see Theorem 2.4 and the comment after it).

Lemma 4.3 The operator (L∗
γ )

−1L̃∗, considered as an operator on the Hilbert space H0 = L2(μ) ∩ {1}⊥
introduced in (2.8), is bounded.

Denoting by r the spectral radius of (L∗
γ )

−1L̃∗ ∈B(H0), it is easily checked that (Lγ + ηL̃)∗ is
invertible for |η|< r−1 with

[(Lγ + ηL̃)∗]−1 =
(+∞∑

n=0

(−η)n[(L∗
γ )

−1L̃∗]n

)
(L∗

γ )
−1.

Therefore, a straightforward computation shows that

hγ ,η(q, p)= 1 +
+∞∑
n=1

(−η)n[(L∗
γ )

−1L̃∗]n1 (4.42)

is an admissible solution of (4.41), and it is in fact the only one in view of the uniqueness of the
invariant probability measure (since hγ ,η can be shown to be nonnegative). Note that the normalization



72 B. LEIMKUHLER ET AL.

of the measure hγ ,η dμ does not depend on η. Finally,∫
E

FTM −1pμγ ,η(dq dp)= −η
∫
E

FTM −1p[(L∗
γ )

−1L̃∗1]μ(dq dp)+ η2rη,γ ,

with rη,γ uniformly bounded as η→ 0. This gives (3.4).

Proof of Lemma 4.3. Note first that the image of L̃∗ is contained in H0 since, for any u ∈ S,∫
E
L̃∗u dμ=

∫
E

u(L̃1) dμ= 0.

It is therefore possible to give a meaning to the operator (L∗
γ )

−1L̃∗ as an operator on S̃. We then check

that the perturbation L̃ is Lγ -bounded (with relative bound 0, in fact): for u ∈ S̃,

‖L̃u‖2
L2(μ) � |F|2‖∇pu‖2

L2(μ) = −β|F|2〈u,Lγ u〉L2(μ) � β|F|2‖u‖L2(μ)‖Lγ u‖L2(μ),

so that, for u ∈H0 (recall that L−1
γ u is well defined in this case),

‖L̃L−1
γ u‖2

L2(μ) � β|F|2‖u‖L2(μ)‖L−1
γ u‖L2(μ) � β|F|2‖L−1

γ ‖B(H0)‖u‖2
L2(μ).

This proves that L̃L−1
γ is bounded, hence its adjoint is bounded as well. �

4.11.2 Proof of Lemma 3.2. Recall that we set mass matrices to identity when considering over-
damped limits. Since

Lγ (FTp)= −γFTp − FT∇V ,

it follows (using first (4.42) to compute the linear response and then (2.11) to obtain the asymptotic
behaviour of L−1

γ (F
T∇V) as γ → +∞)

γ νF,γ = lim
η→0

γ

η

∫
E

FTpμγ ,η(dq dp)= lim
η→0

1

η

∫
E

[−FT∇V(q)− Lγ (FTp)]μγ ,η(dq dp)

= β

∫
E

FTpL−1
γ [FT∇V(q)+ Lγ (FTp)]μ(dq dp)

= |F|2 + β

∫
E
(FTp)[pT∇qL−1

ovd(F
T∇V)]μ(dq dp)+ 1

γ
rγ

= |F|2 +
∫
M
(FT∇∗

q 1)L−1
ovd(F

T∇V) μ(dq)+ 1

γ
rγ

= |F|2 + β

∫
M
(FT∇V)L−1

ovd(F
T∇V) μ(dq)+ 1

γ
rγ

= |F|2 + νF + 1

γ
rγ ,

where rγ is uniformly bounded for γ � 1. This gives the desired result.



THE COMPUTATION OF AVERAGES IN LANGEVIN DYNAMICS 73

Remark 4.4 The article Hairer & Pavliotis (2008) in fact studies the limiting behaviour of the auto-
diffusion coefficient, as computed from (3.6):

βDF =
∫
M

|F + ∇qL−1
ovd(F · ∇V)|2 dμ.

Using Lovd = −β−1∇∗
q ∇q, a simple computation shows

βDF = |F|2 + 2
∫
M

FT∇qL−1
ovd(F · ∇V) dμ+

∫
M

|∇qL−1
ovd(F · ∇V)|2dμ

= |F|2 + 2
∫
M
(FT∇∗

q 1)L−1
ovd(F · ∇V) dμ+

∫
M

∇∗
q ∇qL−1

ovd(F · ∇V)L−1
ovd(F · ∇V) dμ

= |F|2 + β

∫
M
(FT∇V)L−1

ovd(F · ∇V) dμ,

so that βDF = |F|2 + νF .

4.12 Proof of Theorem 3.4

The proof again is along the lines of the proof written in Section 4.4, and we are therefore very brief,
mentioning only the most important modifications.

Case α= 1. Let us first consider the first-order scheme PγC,B+ηL̃,A
Δt . Using the notation introduced in

Section 4.3.1, and recalling the definition Bη = B + ηL̃, we write

PγC,B+ηL̃,A
Δt = Id +Δt(A + Bη + γC)+ Δt2

2
T [(A + Bη + γC)2] + Δt3

2
Rη,Δt, (4.43)

with

Rη,Δt =
∫ 1

0
(1 − θ)2T [(A + Bη + γC)PγC,B+ηL̃,A

θΔt ]3 dθ .

All the operators appearing in the expressions above are defined on the core S, and have values in S.
Since

eθΔtBη − eθΔtB = η

∫ 1

0
eθsBη L̃ eθ(1−s)B ds,

it is easy to see that the operator Rη,Δt can be rewritten as the sum of two contributions: Rη,Δt = R0,Δt +
ηR̃η,Δt, where, for ψ ∈ S, the smooth function R̃η,Δtψ can be uniformly controlled in η for |η| � 1.
Finally, the evolution operator can be rewritten as

PγC,B+ηL̃,A
Δt = Id +Δt(Lγ + ηL̃)+ Δt2

2
(L2

γ + S1 + ηD1)+Δt2Rη,Δt, (4.44)

where S1 is defined in (4.15) (which corresponds to the case η= 0), D1 = (2γC + B)L̃ + L̃(2A + B)
and

Rη,Δt = Δt

2
R0,Δt + ηΔt

2
R̃η,Δt + η2

2
L̃2.
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We then compute, for ϕ ∈ S and f1,1,γ ∈ S̃ to be chosen later,

∫
E

[(
Id − PγC,B+ηL̃,A

Δt

Δt

)
ϕ

]
(1 +Δtf1,0,γ + ηf0,1,γ + ηΔtf1,1,γ ) dμ

= −
∫
E

[(
Lγ + ηL̃ + Δt

2
(L2

γ + S1 + ηD1)+ΔtRη,Δt

)
ϕ

]
(1 +Δtf1,0,γ + ηf0,1,γ + ηΔtf1,1,γ ) dμ

= −η
∫
E

[L̃ϕ + (Lγ ϕ)f0,1,γ ] dμ−Δt
∫
E

[
1

2
S1ϕ + (Lγ ϕ)f1,0,γ

]
dμ

− ηΔt
∫
E

[
(L̃ϕ)f1,0,γ + 1

2
(L2

γ + S1)ϕ f0,1,γ + (Lγ ϕ)f1,1,γ + 1

2
D1ϕ

]
dμ

− η2
∫
E
(L̃ϕ)(f0,1,γ +Δtf1,1,γ ) dμ− Δt2

2

∫
E

[(L2
γ + S1 + ηD1)ϕ](f1,0,γ + ηf1,1,γ ) dμ

−Δt
∫
E

Rη,Δtϕ(1 +Δtf1,0,γ + ηf0,1,γ + ηΔtf1,1,γ ) dμ.

The first two terms in the last expression vanish by definition of f0,1,γ and f1,0,γ , while the third one
vanishes when the function f1,1,γ is defined by the Poisson equation

L∗
γ f1,1,γ = −L̃∗f1,0,γ − 1

2 (L
2
γ + S1)

∗f0,1,γ − 1
2 D∗

11. (4.45)

It is easy to check that the right-hand side of this equation has a vanishing average with respect to μ
(integrating with respect to μ and letting the adjoints of the operators act on 1). We then project (4.43)
using Π⊥ and introduce the approximate inverse, defined on S̃ as

Qη,Δt = −L−1
γ + ηL−1

γ Π
⊥L̃Π⊥L−1

γ + Δt

2
[Π⊥ + L−1

γ Π
⊥(S1 + ηD1)Π

⊥L−1
γ ]

− ηΔt

2
L−1
γ Π

⊥L̃Π⊥L−1
γ (L2

γ +Π⊥S1Π
⊥ + ηΠ⊥D1Π

⊥)L−1
γ

− ηΔt

2
L−1
γ (L2

γ +Π⊥S1Π
⊥ + ηΠ⊥D1Π

⊥)L−1
γ Π

⊥L̃Π⊥L−1
γ ,

obtained by truncating the formal series expansion of the inverse operator by discarding terms associated
with η2 or Δt2. The approximate inverse is such that

Π⊥
(

Id − PγC,B+ηL̃,A
Δt

Δt

)
Π⊥Qη,Δt =Π⊥ + η2R1

η,Δt +Δt2R2
η,Δt,

with R2
η,Δt =R2

0,Δt + ηR̃2
η,Δt. We then replace Π⊥ϕ by Qη,Δtψ and conclude as in Section 4.4.

Case α = 2. The result for the second-order splitting is obtained by appropriate modifications of the
proof written above for p = 1, similar to the ones introduced in Section 4.6. We will therefore mention
only the most important point, which is the following. Replacing B by Bη in the expansion (4.22), we
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see that

Id − P
γC,Bη ,A,Bη ,γC
Δt

Δt
= −Lγ − ηL̃ − Δt

2
(Lγ + ηL̃)2 −Δt2

(
1

6
(Lγ + ηL̃)3 + S2 + ηS̃2,η

)
−Δt3Rη,Δt

= −Lγ − ηL̃ − Δt

2
L2
γ − ηΔt

2

(
Lγ L̃ + L̃Lγ

)
− η2Δt

2
L̃2 −Δt2

(
1

6
L3
γ + S2

)

− ηΔt2

(
1

6

(
L2
γ L̃ + Lγ L̃Lγ + L̃L2

γ

)
+ S̃2,0

)
+ Rη,Δt,

where Rη,Δt regroups operators of orderΔt3+αηα
′
orΔt2+αη2+α′

for α,α′ � 0, the operator S2 is defined
in (4.21) and S̃2,η satisfies

12S̃2,η = [A, [A, L̃]] − 1

2
[B, [L̃, A]] − 1

2
[L̃, [B, A]] + γ [L̃, [A + B, C]] + γ [A + B, [L̃, C]]

− γ 2

2
[C, [C, L̃]] + η

(
γ [L̃, [L̃, C]] − 1

2
[L̃, [L̃, A]]

)
.

We next compute the dominant terms in

∫
E

[(
Id − P

γC,Bη ,A,Bη ,γC
Δt

Δt

)
ϕ

]
(1 +Δt2f2,0,γ + ηf0,1,γ + ηΔt2f2,1,γ ) dμ.

We consider only contributions of the form ηαΔtα
′

with α = 0, 1 and 0 � α′ � 2. The contributions in
Δt,Δt2 are the same as in the case η= 0 and therefore vanish. The contribution in η vanishes in view
of the choice of f0,1,γ . For the same reason, the contribution in ηΔt vanishes as well:

−ηΔt

2

∫
E

[
(Lγ L̃ + L̃Lγ )ϕ + (L2

γ ϕ)f0,1,γ

]
dμ= −ηΔt

2

∫
E
(Lγ ϕ)(L̃∗1 + L∗

γ f0,1,γ ) dμ= 0.

The contribution in ηΔt2 is proportional to

∫
E

[(
L2
γ L̃ + Lγ L̃Lγ + L̃L2

γ

6
+ S̃2,0

)
ϕ + (L̃ϕ)f2,0,γ +

[(
L3
γ

6
+ S2

)
ϕ

]
f0,1,γ + (Lγ ϕ)f2,1,γ

]
dμ.

The requirement that this expression vanishes for all functions ϕ ∈ S characterizes the function f2,1,γ

(the discussion on the solvability of this equation following the same lines as the discussion on the
solvability of (4.45)). The proof is then concluded as in the case p = 1.

4.13 Proof of Theorem 3.6

The proof of this result is obtained by modifying the proof of Theorem 2.21 presented in Section 4.9 by
taking into account the nonequilibrium perturbation, as done in the proof of Theorem 3.4 presented in
Section 4.12. We will therefore be very brief and only mention the most important modifications.

We write the proof for the scheme associated with the evolution operator P
γC,A,Bη ,A,γC
Δt , for instance

(since this is the case explicitly treated in Section 4.9 for η= 0). First, arguing as in Section 4.9, we see
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that it is possible to replace P
γC,A,Bη ,A,γC
Δt by

πPham,Δt,ηπ = π eΔtA/2 eΔtBη eΔtA/2π

up to error terms in the invariant measure which are exponentially small in γΔt. Note that
Bη = (F − ∇V) · ∇p, so that the rules (4.29–4.30) are still valid. Therefore, introducing again
h =Δt2/2,

πPham,Δt,ηπ = π + Δt2

2
π(A + Bη)

2π

+ Δt4

24
π

(
A4 + 3

2
A2BηA + 3

2
ABηA

2 + 3

2
B2
ηA

2 + 1

2
BηA

3

)
π +Δt6RΔt,η

= π + hπ(Lovd + η[L̃(A + B)+ (A + B)L̃] + η2L̃2)π

+ h2

2
(L2

ovd + D + ηD̃1 + η2D̃2)π +Δt6RΔt,η,

where D is defined in (4.33), and the expressions of the operators D̃i (i = 1, 2) are obtained by expanding
the various terms AaBb

ηA
c in powers of η. Keeping only the dominant terms, we arrive at

πPham,Δt,ηπ = π + hLovdπ + h2

2
(L2

ovd + D)+ ηhπ [L̃(A + B)+ (A + B)L̃]π + ηh2

2
D̃1 + RΔt,η.

Since
π(L̃(A + B)+ (A + B)L̃)π = πL̃Aπ = L̃ovd,

we conclude

πPham,Δt,ηπ = π + h(Lovd + ηL̃ovd)π + h2

2
(L2

ovd + D + ηD̃1)+ RΔt,η.

This relation is the analogue of (4.44) in the overdamped limit, and the remainder of the proof is carried
on following the strategy presented in Section 4.9.
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