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We present an approach to Langevin dynamics
in the presence of holonomic constraints based
on decomposition of the system into components
representing geodesic flow, constrained impulse and
constrained diffusion. We show that a particular
ordering of the components results in an integrator
that is an order of magnitude more accurate for
configurational averages than existing alternatives.
Moreover, by combining the geodesic integration
method with a solvent–solute force splitting, we
demonstrate that stepsizes of at least 8 fs can be
used for solvated biomolecules with high sampling
accuracy and without substantially altering diffusion
rates, approximately increasing by a factor of two the
efficiency of molecular dynamics sampling for such
systems. The methods described in this article are
easily implemented using the standard apparatus of
modern simulation codes.

1. Introduction
Molecular dynamics (MD) is a widely used and powerful
tool for studying molecular systems with extensive
applications to the simulation of macromolecules both
for fundamental biology/biochemistry [1,2] and,
increasingly, for medical applications [3]. In MD
simulation of complex systems, the most important
restriction (ignoring issues of force field quality) is the
size of the timestep that can be used to accurately
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compute trajectories. The goal of simulation is typically to unlock behaviours that occur on
timescales of microseconds or more, for example state-to-state protein conformational dynamics
[4] such as partial folds of proteins [5], but the use of typical MD methods limits the timestep to a
few femtoseconds.

In recent decades, with the explosion in the use of MD, there has appeared a wide variety
of integration algorithms for molecular dynamics simulation, with the typical goal being to
sample the canonical ensemble defined by constant temperature, particle number and system
volume. The two principal types of tools that are in widespread use for increasing the timestep in
molecular sampling are multiple timestepping [6,7] and the use of holonomic constraints [8–10].
Caution is needed when applying the former in MD because (i) many schemes exhibit significant
resonance artefact [11,12] that substantially limits their viability for practical applications and (ii)
methods to tame the resonances may end up severely corrupting the calculation of dynamical
properties such as transition and diffusion rates.

The method of constraints consists of introducing algebraic relations, for example to freeze
selected bond lengths [9,10] and/or bond angles [13]. It is commonly stated that the use of
constraints can enable an increase in the simulation timestep for organic molecules in detailed
solvent to between 2 and 4 fs, a substantial improvement on the 1–2 fs typically used for fully
flexible models. It is worth mentioning that a doubling of the timestep may mean halving the
computational budget for a laboratory that relies largely on such MD simulations, so the cost
impacts (or, conversely, the accessible range of simulation) owing to increasing the timestep are
considerable. The general wisdom regarding the stepsize threshold for biomolecular dynamics,
with constrained stochastic dynamics, still places the limit at around 4 fs [14]. Efforts to go beyond
this have largely involved more complicated computations (e.g. Hessian matrices and/or partial
normal modes, and schemes for mollification of resonance artefacts) [15–18], often limiting their
efficiency (or scalability on parallel architectures) or their suitability for implementation in major
molecular modelling software. Typical methods are paired with special techniques to compute the
long-range electrostatic forces, such as particle mesh Ewald summation. Some extreme multiple
timestepping proposals can use ‘outer’ stepsizes (in a multiple timestepping context) of more
than 100 fs [19–21], but without any consideration of the dynamical approximation.

There is no general principle for constructing integrators for constrained stochastic systems
such as Langevin dynamics. Extending an idea of Leimkuhler and Patrick [22] for deterministic
dynamics on a Riemannian manifold, we propose to view the splitting of a constrained MD
problem as a collection of separate constrained problems and to solve or approximate each
constrained flow. In practice, the constraints are implemented using one or more steps of the
SHAKE method [8] (or its RATTLE variant [23]). As particular examples, we obtain geodesic
versions of a popular splitting due to Bussi and Parinello [24] and our own ‘BAOAB’ integrator
[25,26]. We find that the accuracy and stability advantages of the geodesic BAOAB scheme are so
dramatic (across a wide range of stepsizes) as to render many popular alternatives uncompetitive.
In the case of a biomolecular model in detailed solvent, the use of very large stepsizes leads to
instabilities because of unconstrained solute modes. In this case, we show that combining the
geodesic BAOAB integrator with a multiple timestepping scheme based on solvent–solute force
splitting, the stepsize for biomolecules can be increased to 8 or even 9 fs without significantly
compromising the resolution of long timescale dynamics or sampling accuracy and with only
modest additional cost per timestep. This approach is conceptually simple and straightforward
to implement using existing, off-the-peg, integration components present in most MD packages
(and without the need for Hessian matrices, knowledge of specific collective variables, normal
mode analyses or other system-dependent analysis).

2. Numerical methods for constrained Langevin dynamics
The analysis of MD stability barriers has largely focussed on deterministic MD, although some
studies have emphasized the use of Langevin dynamics [15,17,24,27]. The incorporation of
stochastic perturbations of the force field, combined with friction in such a way as to preserve
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the fluctuation–dissipation relation, dramatically changes the nature of the molecular dynamics
problem. Resonances present in the deterministic system are destroyed and the ergodic nature of
stochastic dynamics improves the accuracy and reliability of numerical methods, even in the long
time limit.

The mathematical formulation of constrained Langevin dynamics [28] builds on the standard
theory of constrained Hamiltonian systems (which may be derived starting from the constrained
Euler–Lagrange equations). We write the constrained Langevin MD system in an overdetermined
form

d
dt

q=M−1p, (2.1)

d
dt

p= F − γp+
√

2kBTγM1/2η(t)−
m∑

i=1

λi∇gi(q), (2.2)

0= gj(q), j= 1, 2, . . . , m (2.3)

and 0=∇gj(q)TM−1p, j= 1, 2, . . . , m (2.4)

where M= diag(m1, m2, . . . , mN), with mi the mass associated to the ith degree of freedom, F=
−∇U(q) is the vector of total force (with U : R

N→R the potential energy function), γ represents a
prescribed friction coefficient (or collision rate) and η(t) is a vector-valued, stationary, zero-mean
Gaussian process whose components satisfy

〈ηi(t)ηj(t
′)〉 = δijδ(t− t′),

where δij is the Kronecker delta and δ(·) is the Dirac delta. The variable {gj} are smooth functions
that define the constraint relationships, λi are Lagrange multipliers that are chosen to maintain the
constraints, m> 0 is the number of constraints, and kBT> 0 represents the temperature scaled by
Boltzmann’s constant. The vector (q, p ) represents a phase space point (position and momentum
vectors), restricted to the configuration manifold M= {q | gj(q)= 0, j= 1, 2, . . . , m} and cotangent
space T∗M= {p | ∇gj(q)TM−1p= 0, j= 1, 2, . . . , m}, respectively. We assume that the number of
degrees of freedom N to be large, making direct sampling methods (e.g. Monte Carlo methods)
infeasible or inefficient.

The co-tangency constraints (2.4) are redundant, because they are automatically satisfied along
solutions that lie in the configuration manifold, but it is useful to include them here for later
reference. In the case of constraints, the target canonical (NVT) probability density may be written
using the Dirac delta function [28–30]

ρ
g
β (q, p )=Z−1 exp(−βH(q, p ))

m∏
i=1

δ[gi(q)]
m∏

i=1

δ[∇gi(q)TM−1p ],

where β = (kBT)−1 and Z is a suitable normalization constant so that the total integral of ρg
β is

one. Both the equations of motion and the probability measure can alternatively be written in an
intrinsic form or in a system of local coordinates, but we favour the cartesian form for simplicity.
In what follows we assume that the constraints are non-degenerate, meaning that the Jacobian
matrix of the constraints is of full rank at every point, and also that the stochastic constrained
system is ergodic.

The best existing methods for unconstrained Langevin dynamics are based on a splitting and
composition technique [24,25,31–33] that builds directly on the procedures used to construct
symplectic integrators for Hamiltonian dynamics [34,35]. The common approach is to break
the stochastic vector field into parts by writing it as an additive decomposition, with each part
assumed to be solvable (in the distributional sense). For example, the BAOAB method [25] uses a
splitting into three parts, where ‘B’ stands for a ‘kick’ using the force evaluated at the current
position, ‘A’ represents a linear drift (along the direction of the current velocity) and ‘O’ is

 on January 21, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160138

...................................................

an exact (in the sense of the associated time-evolved probability distribution initiated from the
point distribution at the initial conditions) solve of the Ornstein–Uhlenbeck stochastic differential
equations associated to each component:

q̇i = 0,

ṗi =−γ pi +
√

2kBTγmiηi(t).

The primary issue for Langevin discretization in the case of molecular dynamics is the effective
perturbation of the invariant distribution induced by the numerical method, i.e. the sampling
bias due to finite timestep. Although it is difficult to calculate this perturbation, it is often
possible to compare, in various asymptotic limits, the perturbations and thus to select optimal
methods for approximation of equilibrium averages [25,36]. In addition, it is possible to analyse
special cases by direct calculation, including the harmonic model problem or perturbations
thereof. Of particular interest in the biomolecular dynamics setting are results which demonstrate
that stepsizes of up to 2.7 fs may be used safely for fully flexible, unconstrained (detailed
solvent) models without degradation of configurational sampling accuracy [26] if the BAOAB
splitting is used. This observation is likely the consequence of two facts: (i) BAOAB is exact
for configurational sampling in the case of harmonic oscillators and, moreover, (ii) BAOAB has
much smaller errors than alternative splitting for mildly anharmonic perturbations of harmonic
oscillators [37]. It is typically assumed that the stepsize in a Verlet molecular dynamics simulation
of a fully flexible biological model must be restricted to about 1 fs to have sufficient accuracy
for chemical studies, where ‘accuracy’ is usually taken in terms of the drift in energy in long
simulations. The increased stepsize usable for the stochastic MD method is not due to a change
in the stability threshold but is a direct consequence of the specific choice of splitting scheme and
the change of benchmark to statistical NVT configurational sampling from energy conservation.
Note also that averages of kinetic energy and momentum-dependent observables computed using
the BAOAB scheme are not as accurate as position-dependent averages—the scheme is effectively
optimized for configurational sampling; however, we hasten to add that the method is convergent
for all sensible kinetic quantities and so it is possible, for example, to calculate autocorrelation
functions and thus diffusion rates, as we demonstrate in §7.

Two of the most popular constrained dynamics schemes in the literature are SHAKE and
RATTLE. The SHAKE method of Ryckaert et al. [8] constrains the position variables to the
constraint manifold g(q)= 0 via oblique projection typically taken to be along the direction
orthogonal to the manifold at the previous timestep. In contrast, the ‘RATTLE’ method [23]
incorporates an additional orthogonal projection of the momenta to the cotangent space at a given
point. For a deterministic system, the latter consists of the following sequence of calculations
using a timestep δt:

qn+1 = qn + δtM−1pn+1/2,

pn+1/2 = pn + δt
2

F(qn )− δt
2

m∑
i=1

λni ∇gi(q
n),

0= gj(q
n+1), j= 1, 2, . . . , m

pn+1 = pn+1/2 + δt
2

F(qn+1)− δt
2

m∑
i=1

μn+1
i ∇gi(q

n+1),

and 0=∇gj(q
n+1)TM−1pn+1, j= 1, 2, . . . , m

A second set of multipliers {μn
j }must be computed in order to maintain the tangency conditions.

RATTLE can be viewed as half a kick in the momenta, followed by oblique projection to the
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(a) (b) (c)

qn qn qn
qunc

qunc
qunc

Figure 1. Illustration of the limitations of SHAKE projection. In SHAKE, an unconstrained step is taken from a point q n on the
constraintmanifold using the applied forces resulting inq unc, then a projection back to themanifold is applied along the normal
direction to the constraint manifold obtained at the start of the step. (a) The SHAKE projection may not be unique, and with
a large timestep, even the ‘nearest’ solution might arise from a different part of the constraint manifold. (b) There may be no
solution at all. (c) Even when there is a unique solution, significant error may arise from the oblique projection. (Online version
in colour.)

configuration manifold, then half a kick in the momenta and an orthogonal projection to the
cotangent space (RATTLE projection). It has been shown previously that RATTLE and SHAKE are
mathematically conjugate, i.e. formally equivalent from step to step under a change of variables,
and both are symplectic [38].

In the case of multiple constraints, an iterative procedure must typically be used to solve the
non-linear system to implement SHAKE projection. The method of Ciccotti et al. [8] uses iteration
over the equations (in the manner of Gauss–Seidel iteration) performing a single Newton step on
each successive constraint. An alternative is to perform a Newton iteration leading to the need
to solve a system of linear equations at each step [14,39]. For the RATTLE projection, in the case
of multiple constraints, a similar linear system must be solved. When the constraints result in
a system of decoupled planar rigid bodies, the SETTLE method [40] is an exact solution of the
constraints.

For constrained Langevin dynamics, typical methods are constructed by interleaving
unconstrained Langevin steps with projections, usually implemented via SHAKE or RATTLE
steps [28,41]. In building large timestep methods, the step-project approach could, in some cases,
lead to the introduction of large intermediate errors. Although the constraints are intended to be
satisfied at the end of the step, there are potential problems: (i) the step may fail as there may be
no solution (or more than one solution) consistent with the projection direction and (ii) even if the
step succeeds, significant error may have been introduced by the procedure, due to the oblique
projection (figure 1).

3. The geodesic integration algorithm
We now describe an integration scheme for stochastic MD which (a) preserves the constraints
and (b) is symplectic in the deterministic case (γ = 0). Although SHAKE and RATTLE are often
proposed as constrained analogues of the Verlet method, we argue that the alternative approach
described in this section is a more direct and geometrically coherent constrained analogue. For
the deterministic case, the geodesic integrator presented here is a special case of the Riemannian
manifold symplectic integrator [22] (specifically the method described in the comment at the end
of §4.2 of that article). We combine the scheme with efficient constraint solvers, stochastic
perturbation and, later in this article, a further splitting of the force field, in order to develop
an effective method for biomolecular modelling.

The idea of the geodesic integrator is straightforward. If we split the Hamiltonian as H=
H1 +H2, then it is desirable to solve each part, exactly preserving the constraints and tangency
constraints. Splitting Hamiltonian dynamics in the natural way into kinetic and potential terms,
as in the Verlet method, and introducing Lagrange multipliers to maintain the constraints, results
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in a pair of systems of the form

Ag:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

q=M−1p,

d
dt

p=−
m∑

i=1

λi∇gi(q),

0= gj(q), j= 1, 2, . . . , m

0=∇gj(q)TM−1p, j= 1, 2, . . . , m

Bg:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

q= 0,

d
dt

p=−∇U(q)−
m∑

i=1

μi∇gi(q),

0= gj(q), j= 1, 2, . . . , m

0=∇gj(q)TM−1p, j= 1, 2, . . . , m

We see that, for the kinetic part (Ag), the co-tangency constraint is redundant, but for the system
in the part defined by the potential energy (Bg), the configuration constraint is redundant (since
the positions are fixed), whereas the co-tangency constraint will still ensure that the changes in
the momentum vector are restricted to the cotangent space. The Lagrange multipliers have been
given separate names (λ, μ) to distinguish their separate roles in satisfying configurational and
co-tangency conditions, respectively.

The solution for part Bg is easily obtained. It can be viewed as a linear projection of the
unconstrained kick imparted by the forces into the cotangent space. However, the solution of
the Ag part is a geodesic curve (an unforced motion on the constraint surface) and so requires the
solution of a non-linear system of ODEs. A ‘geodesic integrator’ is thus obtained by solving the
Ag and Bg parts separately and then composing the flows.

When the constraints have a simple structure, such as planar rigid bodies (e.g. water), one may
compute their geodesic flow exactly. Indeed this is exactly the framework for which the SETTLE
method [40] has been developed and one finds this algorithm implemented in many production
codes. Accurate methods for propagating more general rigid bodies are also available and used
in gas state simulations [42]. An alternative Langevin dynamics method for constrained systems
of this type (i.e. which can be decomposed as a system of independent rigid bodies coupled
only through forces) has been proposed by Davidchack et al. [43], again taking advantage of the
quaternion representation to describe the constraint manifold. However, our interest is ultimately
in systems of a more general type for which it is typically impossible to solve the Ag part
exactly. Nonetheless, from an efficiency perspective, we see that the geodesic integrator requires
only the numerical solution of a non-linear flow to find the drift in the configuration variables
and the step does not involve any evaluation of the force field defined by the potential energy
function.

In the more general situation, the geodesics must be approximated by a numerical method.
There are several alternative methods for computing them. The obvious approach is to employ
a series of SHAKE/RATTLE steps which preserve the constraint manifold and respect the co-
tangency conditions. The combined method can be viewed as a sort of multiple timestepping
method in which the multiple steps are not taken with fast components of the force field but
merely to resolve the geodesic flow. This approach was robust and stable in our simulations,
although to push the timestep up maximally in the case of a biomolecule, we needed to employ
an additional level of solvent–solute decomposition as described later in this article. Higher-order
integrators [44] could be used to compute geodesics, but from our experiments, we doubt that this
extra accuracy would be needed in practice in the biomolecular dynamics setting.
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For the solution of Bg we insert the equation for the acceleration into the co-tangency constraint
and solve for the Lagrange multipliers. This results in a system of differential equations of the
following form:

d
dt

q= 0,

d
dt

p=−Π(q)∇U(q).

The matrix Π is a projector (satisfying Π2 =Π) onto the cotangent space defined by

Π = I−GT[GM−1GT]−1GM−1

where G is an m×N matrix whose rows are given by the gradients of the constraint functions,
i.e.

G(q)= (gij(q)), gij(q)= ∂gi(q)
∂qj

We solve the equations for q (t) and p (t) in this step of the algorithm exactly by use of the formula

q (t)≡ q (0), p (t)= p (0)− tΠ(q (0))∇U(q (0))

which is a projected ‘kick’.
In the case of Langevin dynamics, the stochastic terms (due to the constrained Ornstein–

Uhlenbeck process) result in a projected SDE system of the form [28,45]

dp
dt
=−γΠp+

√
2γ kBTΠM1/2η. (3.1)

These equations have the (weak, i.e. exact in the sense of averages) solution

p (t)= e−γ tΠp (0)+
√

kBT
[
I− e−2γ tΠ

]1/2
ΠM1/2R(t),

where R(t)∼N(0, 1) is a vector of i.i.d. normal random numbers.
The computation of the exponential is easily performed by Rodrigues’ formula, because

exp(αΠ)= I+ αΠ + 1
2α

2Π2 + · · · = I+ αΠ + 1
2α

2Π + · · · = I+ (eα − 1)Π.

For the square root, one thus obtains[
I− e−2γ tΠ

]1/2 =
√

1− e−2γ tΠ.

If we have Π p (0)= p (0), then the evolution reduces to

p (t)= e−γ tp (0)+
√

kBT(1− e−2γ t)ΠM1/2R(t).

The detailed presentation of the g-BAOAB algorithm based on these formulas is given in the
Appendix. Of course other choices of the composition sequence may be adopted. As discussed
earlier in this article, we have favourable experience and supporting analysis of the g-BAOAB
method in the setting of unconstrained MD [26]. We also compare the g-OBABO method in the
experiments.

As the current implementation of the geodesic integrator relies on a series of SHAKE/RATTLE
steps, alternatives to vanilla SHAKE, such as Newton-based techniques [14,39], LINCS [46], etc.
could in principle be readily employed to implement our method.

4. Analysis of the sampling error
In this section, we discuss the order of accuracy of the geodesic integrator for long-term
(ergodic) averages. Our approach to accuracy (in the sense of long-term averages) is at once
more transparent and more relevant for MD than the standard method based on convergence
on finite time intervals (‘weak order’), see, e.g. [41], which does not, in the end, typically give an
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asymptotic (t→∞) result because of the difficulty in computing global bounds for the error that
hold on infinite time intervals.

A rigorous mathematical foundation for Langevin splitting methods for unconstrained
systems, including the development of asymptotic expansions for invariant distributions and an
understanding of the effect on accuracy of different ordering of the components of composition
methods, is now available [36]. We summarize this approach here. The analysis proceeds from
the study of the Fokker–Planck operator L acting on the phase space density. Under standard
assumptions, the unique steady state of the Fokker–Planck equation ∂ρ/∂t=Lρ is the Gibbs
density ρβ which corresponds to thermodynamic equilibrium. The splitting of the stochastic
differential equations of Langevin dynamics generates a corresponding splitting of the Fokker–
Planck operator. Using the Baker–Campbell–Hausdorff expansion, one then derives an effective
operator whose steady states are perturbations of ρβ . That is, one obtains the following relation,
sometimes referred to as a Talay–Tubaro expansion [47]:

[L+ δtL1 +O(δt2)] ρβ [1+ δtf1 +O(δt2)]= 0,

where L1 is the leading perturbation of the operator L and f1 describes the corresponding
perturbation of the density. Then one obtains, after using Lρβ = 0, an equation for f1.

To analyse the error expansion for the invariant distribution in the constrained case, we use
the method of parameterization, whereby the constrained system is replaced by an unconstrained
system in a reduced coordinate system. For a general constraint manifold, this reduction can only
be carried out locally and one typically needs to assemble a collection of such parameterizations
to span the entire constraint manifold. However, in MD, many constraint networks we would
be interested in are tree-structured [39], which implies that a single global parameterization is
possible. We assume such a case here for the purpose of presenting a simplified general analysis.

After reduction to canonical coordinates θ , pθ , which follows by similar analysis to the
deterministic case [35], the stochastic constrained system is equivalent to Langevin dynamics
applied to a conservative system with a non-constant mass matrix having a Hamiltonian of the
form

Ĥ(θ , pθ )= 1
2 pT
θ J(θ )pθ + Û(θ ),

with symmetric positive definite matrix J(θ ). The Langevin equations of motion become

θ̇ = J(θ )pθ (4.1a)

and

ṗθ =−∇Û(θ )− 1
2∇pθ

TJ(θ )pθ − γpθ +
√

2kBTγ J−1(θ )η(t) (4.1b)

where η(t) denotes a vector of Wiener increments in the appropriate dimensional space and ∇
represents the gradient with respect to θ . The dynamics have an associated invariant distribution
ρ̂

g
β , where

ρ̂
g
β ∝ exp(−βĤ(θ , pθ )), 〈f (θ , pθ )〉∝

∫
f (θ , pθ )ρ̂g

β (θ , pθ ) dθ dpθ

Each of the substeps of the geodesic integrator, Ag, Bg and Og map directly to associated
parameterized integration steps Âg, B̂g, Ôg:

Âg:

⎧⎨
⎩

θ̇ = J(θ)pθ

ṗθ =− 1
2∇θ (pθ

TJ(θ)pθ )
, B̂g:

⎧⎨
⎩

θ̇ = 0

ṗθ =−∇Û(θ )

Ôg:

⎧⎨
⎩

θ̇ = 0

ṗθ =−γpθ +
√

2kBTγ J−1(θ )η(t)

This case is not directly covered by our previous convergence analysis [36], which always
assumed a constant mass matrix. Nevertheless, it is possible in principle to carry out similar
calculations based on the Talay–Tubaro expansion [47].
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The Fokker–Planck (forward Kolmogorov) equation gives the evolution of a distribution ρ

under the exact (weak) flow, via ρt = exp(tL)ρ0, where L is a second-order Kolmogorov operator.
The associated evolution operator can be computed for each of the A, B and O parts:

LÂgρ =−∇θ · (J(θ)pθ ρ)+ 1
2∇pθ · (∇θpθ

TJ(θ )pθρ),

LB̂gρ =∇θ Û(θ) · ∇pθ ρ

and LÔgρ =∇pθ · (pθ ρ)+ kBTJ−1(θ) :∇2
pθ ρ

where X : Y := tr(XYT). As we have used an additive splitting of the vector field in (4.1), the overall
exact operator becomes Lg =LÂg + LB̂g + LÔg such that

exp(Lg)ρ̂βg = ρ̂βg, Lgρ̂β
g = 0.

For a splitting scheme composed by solving the corresponding vector fields in sequence, the
overall evolution of a distribution is characterized by the product of the exponential of these
operators. For example, for the g-BAOAB scheme with stepsize δt, we have

exp(L(g-BAOAB)
g ) := exp

(
δt
2
LB̂g

)
exp

(
δt
2
LÂg

)
exp(δtLÔg ) exp

(
δt
2
LÂg

)
exp

(
δt
2
LB̂g

)
.

Under an ergodicity assumption, we have a unique distribution such that

L(g-BAOAB)
g ρ̂

(g-BAOAB)
β = 0,

with computed averages of an observable f (ignoring sampling error) given as

〈 f (θ , pθ )〉(g-BAOAB) :=
∫

f (θ , pθ )ρ̂β (g-BAOAB)(θ , pθ ) dθ dpθ .

If we make the ansatz that

ρ̂β
(g-BAOAB) = ρ̂g

β (θ , pθ )+ δtρ1(θ , pθ )+O(δt2),

for some smooth perturbation ρ1, then using the Baker–Campbell–Hausdorff expansion it is
useful to rewrite

L(g-BAOAB)
g =L0 + δtL1 +O(δt2),

L0 =LÂg + LB̂g + LÔg =Lg,

L1 = [LÂg ,LB̂g ]+ [LB̂g ,LÔg ]+ [LÔg ,LÂg ]= 0,

by virtue of a Jacobi identity, where [X, Y] :=XY− YX is the commutator of X and Y. Thus the

equation L(g-BAOAB)
g ρ̂β

(g-BAOAB) = 0 becomes

(Lg +O(δt2))(ρ̂βg(θ , pθ )+ δtρ1(θ , pθ )+O(δt2))= 0,

which implies that ρ1(θ , pθ )≡ 0 and hence

〈 f (θ , pθ )〉(g−BAOAB) = 〈 f (θ , pθ )〉 +O(δt2),

implying that we obtain at least second-order agreement with the exact result for the g-BAOAB
scheme. Similar analysis holds for any scheme using this splitting such that its codifying string
is a palindrome. However, while we expect a second-order error for general observable f , the
pre-factor to the δt2 term may be very different for schemes with different compositions. In
the unconstrained case, our previous work [25,36] has shown that, for particular families of
observables, some higher-order terms terms can be cancelled out completely, after averaging
out over the momenta. Unfortunately, preliminary calculations and numerical experiments
demonstrate that such a property is lost for general symmetric positive definite J(θ); hence, the
g-BAOAB scheme does not have the same superconvergence properties as in the case of constant
mass matrix. Nevertheless, as numerical experiments presented below demonstrate, the error in
sampling using g-BAOAB is dramatically smaller than for other geodesic splitting schemes.
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5. Solvent–solute splitting
In our simulations of biomolecules, we use constraints in a relatively conservative way, freezing
only the water molecules and the bond lengths between hydrogens and heavier atoms (N, C, O).
After the introduction of constraints, we find that the dominant oscillatory mode is associated
to unconstrained angle bonds in the solute molecule, which is typically a polymer or protein,
thus the atoms involved in the protein model need to be simulated using smaller timesteps than
the atoms in the solvent bath. This is precisely the setting that motivated the development of
the RESPA (multiple timestepping) algorithm [6,7], and we turn to this device to enable a longer
timestep than would otherwise be feasible.

In biomolecular simulations with detailed solvent, the number of water molecules that need
to be incorporated must grow in direct proportion to the volume of the periodic simulation
box, whereas even if it is in a compact state, the solute never comes close to packing the
box. For an alanine dipeptide simulation (22 atoms), around 500 water molecules are typically
incorporated in the simulation. For larger molecules, e.g. the bovine pancreatic trypsin inhibitor
(BPTI) with 1101 atoms, the total number of atoms (14 281 in one representative simulation [48])
is again much greater because of the incorporation of detailed solvent. A simulation of mouse
acetylcholinesterase [49] involved 8289 solute atoms and 75 615 solvent atoms. Thus the number
of solvent–solvent interaction forces is much larger than the number of interactions between
atoms of the solute and/or between atoms of the solute and those of the solvent. Thus the
computational cost of computing the solvent–solvent interactions is typically the dominant cost of
the timestep. While there are ways of reducing the long-ranged force computations, they remain
by far the dominant cost in typical bio-MD simulation.

In our scheme, we employ RESPA in an extremely restricted form, with just two or three
‘fast’ solute steps to each outer step. In this formulation, with a complicated reduced model
which is deterministically and stochastically coupled, and a small differential in timestep, we do
not anticipate or observe the resonance artefact that can sometimes arise in other RESPA-based
simulations [11,12]. In the fast system, we incorporate both the internal solute–solute interactions
and the interactions between solute and solvent, because, on the scale of the long stepsize, the
neglect of these could introduce steric clashes. In the spirit of geodesic integration, we resolve
the constrained flow in tandem with the solute kicks instead of projecting only at the end of the
sequence.

Let q= (qp, qs) denote coordinates representing the position of the protein (or more generally,
the solute) and solvent degrees of freedom, respectively, with a consequent division of the
potential energy terms as

U(q)=Uss(qs)+Ups(qp, qs)+Upp(qp)

and a corresponding splitting of the Bg vector field into Bg
p (including forces owing to Upp and

Ups) and Bg
s involving only the solvent–solvent terms, the assumption being that computation of

Bg
p is much cheaper than that of Bg

s . The evolution operator for the scheme with stepsize δt, using
Kp intermediate solute steps, becomes

exp
(
δt
2
LBg

s

)(
exp

(
δt

2Kp
LBg

p

)
exp

(
δt

2Kp
LAg

)
exp

(
δt
Kp

LOg

)

× exp
(
δt

2Kp
LAg

)
exp

(
δt

2Kp
LBg

p

))Kp

exp
(
δt
2
LBg

s

)
(5.1)

Analysis similar to that included above shows that we would expect this scheme to be second
order. In the coordinate description, one finds that [LB̂g

s
,LB̂g

p
]= 0 and

exp(δtLB̂g
s
) exp(δtLB̂g

p
)= exp(δtLB̂g

s
+ δtLB̂g

p
)= exp(δtLB̂g )

and hence when Kp = 1 the scheme reduces to g-BAOAB. Note that while we would expect
stability to improve as we increase Kp, it is not necessarily true that the error is also reduced. In the
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unconstrained case, the BAOAB scheme has a special structure in its leading order error term that
leads to a fortunate cancellation in the observed bias. This error term is modified with any changes
in the scheme, so even attempting to increase the accuracy by solving some terms more accurately
can lead, somewhat surprisingly, to an increase in the bias introduced to the simulation.

The stability restriction on the size of the timestep of the g-BAOAB method is a consequence
of the properties of the system being simulated. In typical cases, we expect this to be a
biological molecule embedded in a water bath. The spectral peaks in water due to intramolecular
interactions begin around 3500 cm−1 (with the fastest motions related to chemical O–H, N–
H and C–H bonds). These are followed by other bond stretches (e.g. the O–C–O symmetric
stretch at 2400 cm−1), other bond stretches involving carbons, and finally angle bonds arising at
around 1600 cm−1 [50]. The intermolecular forces yield a first peak for the out-of-plane libration
at 725 cm−1. If these modes were purely harmonic, the first bond stretch would represent a
stepsize restriction at about 3 fs, although anharmonicities alter these thresholds in numerical
methods (see Schlick et al. [11] and Skeel and Srinivas [51]), and the incorporation of stochastic
perturbations further complicates this picture. In practice, one does in fact find that the stepsize
stability threshold for liquid water is limited to about 2.7 fs, or around 10% below the harmonic
estimate of 3.04 fs. In our simulations, we remove the fastest bonds involving hydrogen which still
leaves various solute bond stretches and angles with slightly longer periods and which normally
would require stepsizes (from a harmonic estimate) of around 4.5 fs for stable integration.

These observations suggest that Kp = 2 or Kp = 3 interior steps of the constrained solute
molecule are all that is needed to overcome the stability restrictions because of internal
unconstrained angle bonds with an overall integration stepsize of up to the vicinity of 10 fs; in
practice (see below) we found again a reduction owing to anharmonic effects, but were still able
to use stepsizes of around 8–9 fs.

6. Application of g-BAOAB to TIP3P water
We begin with an analysis of the performance of g-BAOAB on a simple system: a box of
water. For convenience, we have implemented the algorithm within the Tinker software package
(http://dasher.wustl.edu/tinker/), see the electronic supplementary material for more details.
We consider a constant temperature simulation of 216 TIP3P [52] water molecules in a 18.643 Å
periodic box, included as one of the Tinker benchmark simulations. We run at 300K using a 9 Å
cutoff for all interactions, using constraints on both angles and bond lengths making each water
molecule completely rigid. We compared the following:

— the Midpoint–Euler–Verlet–Midpoint–Euler (MEVME) method of Lelievre et al. [28],
— the scheme implemented in the Tinker standard package (v 7.1) and referred to there as

the Velocity Verlet stochastic dynamics method (derived from a method of Guarneri and
Still [53]), and run using the command stochastic,

— geodesic versions of the Bussi–Parinello method [24], denoted g-OBABO,
— the geodesic BAOAB (g-BAOAB) method.

We further compare using either one or five steps of the RATTLE algorithm for each of the A
pieces in the g-OBABO and g-BAOAB schemes.

We run simulations using each scheme with a timestep of between 1 and 10 fs, over a fixed time
period of 5 ns and with the friction parameter set to a standard value 1 ps−1. For each experiment,
results are averaged over five independent runs. Computed results are compared to the average
of five baseline simulations computed using the default Tinker integrator with a timestep of 0.5 fs.
In figure 2 we show how the average total potential energy varies as we change the timestep for
each scheme.

It is clear from the figure that the g-BAOAB scheme is far superior for the computation of
configurational quantities such as average potential energy compared to the other schemes. When
using one RATTLE step per A piece (each RATTLE iteration increased wall clock time by 4% in
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Figure 2. The error in average total potential energy for the TIP3P model system is plotted for each scheme in comparison to
the baseline result of−2078 kcal mol−1. The MEVME and Tinker default schemes were unable to complete a simulation past a
timestep of 7 fs (and then with high error), whereas the g-BAOAB scheme gives a very small error in total potential energy up
to 9 fs. Using more accurate geodesics improves the stability of g-OBABO, but with relatively large error.

our simulations) the timestep for the g-BAOAB scheme can be pushed as far as 9 fs for TIP3P
without significant error. The observed error at 9 fs is comparable to the error in standard schemes
at between 2 and 3 fs. Increasing the number of RATTLE steps does not provide a significant
qualitative difference to the behaviour of the g-BAOAB scheme, since the sampling error is too
large to further resolve the precision of the integrator and because the baseline result is computed
using the Tinker default integrator which introduces substantial bias.

Interestingly, in the g-OBABO scheme, increasing the number of RATTLE steps taken improves
the stability of the scheme but has little effect on the error. One would expect that converting the
drift steps in the Tinker or MEVME schemes to a geodesic update using multiple RATTLE steps
would improve the stability of the schemes beyond 7 fs, but likely not improve the existing error
results for smaller timesteps.

Figure 3 gives the computed radial distribution function for the O–H distance in the
simulation, using the Tinker package’s radial analysis program. We plot the curves for simulations
using a timestep of 7 fs, and compare to the baseline result at 0.5 fs.

Although errors are present in all schemes, it is again the g-BAOAB scheme which gives
the best results. The other schemes appear to heat the system artificially, pulling the G(r) curve
closer to unity in the initial peak and trough. We can verify this effect by looking at the diffusion
coefficient averaged over all repeated experiments, given in table 1.

In assessing the accuracy of diffusion rates, we are faced with several issues. First, it is well
known that the TIP3P model does not accurately model the self-diffusion of water [54], with
an observed rate of 5.06× 10−5 cm2 s−1, around double the realistic value. In addition, Langevin
dynamics reduces the diffusion compared to microcanonical calculation by an amount dependent
on the magnitude of the friction coefficient [17]. Our comparisons are therefore only sensible
relative to an accurate discretization of Langevin dynamics with the same friction coefficient, in
this case γ = 1 ps−1. (If the key purpose of the simulation is highly accurate intermediate time
dynamics, then one should either resort to a very small friction, use microcanonical simulation or
else employ an alternative ‘gentle’ thermostat [55].)

The diffusion constant is approximated using Tinker’s diffuse program, which computes
mean squared displacements from snapshots taken every 1 ps for each trajectory. Our baseline
computation gives the mean diffusion constant as 4.515× 10−5 cm2 s−1, with an error of 0.186×
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Figure 3. ComputedO–H radial distribution functionsG(r) for each schemeat a timestep of 7 fs, compared to the baseline result
computed at 0.5 fs (black, dashed). The initial peak and trough are highlighted in the insets.

Table 1. Computed diffusion coefficient of water (×10−5 cm2 s−1).

Scheme 3 fs 5 fs 7 fs 9 fs

Tinker default 4.59± 0.13 5.08± 0.37 5.81± 0.37 fail
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MEVME 4.73± 0.30 4.85± 0.23 5.69± 0.34 fail
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g-OBABO (1 RATTLE) 4.65± 0.18 5.33± 0.42 5.69± 0.34 fail
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g-OBABO (5 RATTLEs) 4.79± 0.31 5.14± 0.38 5.40± 0.40 6.39± 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g-BAOAB (1 RATTLE) 4.48± 0.32 4.41± 0.19 4.54± 0.26 4.61± 0.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g-BAOAB (5 RATTLEs) 4.52± 0.34 4.51± 0.20 4.67± 0.45 4.65± 0.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10−5 cm2 s−1. All the schemes give consistent results for the diffusion coefficient at a 3 fs timestep,
and the g-BAOAB scheme gives reasonably accurate results using a 9 fs timestep, even when
using a single RATTLE step. However, there is evident bias introduced in the other schemes, with
the increased diffusion suggesting a higher temperature being sampled than that prescribed by
the thermostat.

In this example, each additional RATTLE step increased the wall clock time by approximately
4%, making the g-BAOAB scheme run using five RATTLE iterations take about 36% longer
compared to the standard Tinker integrator. Thus, on the basis of efficiency measured as accuracy
per unit computational work, the optimal method in this case involves just a single RATTLE step
in each Ag solve. With a single RATTLE step the overall wall clock time is similar for all of the
popular methods tested.

We note that the case of independent rigid bodies coupled through forces, such as the TIP3P
model described in this section, can also be handled using the quaternionic Langevin schemes
of Davidchack et al. [43]. One of the methods (‘Langevin C’) of that article uses a BAOAB-
inspired scheme in quaternionic representation; the authors of that article likewise observed a
maximum stepsize of around 9 fs with high configurational sampling accuracy, suggesting a
close relationship between our scheme and theirs in this special case. However, their method
does not extend to more complicated constraint manifold structures such as those associated to
a protein.
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7. Application to a biomolecular model problem
We consider a simulation of solvated alanine dipeptide, parameterized using the Amber99 [56]
force field with explicit solvent and an 8 Å cutoff for all long-range interactions. The NVT
simulation was conducted at 300 K in a 24 Å periodic cube, with 442 TIP3P water molecules kept
rigid and with all bonds to hydrogen in the alanine dipeptide molecule constrained.

Testing showed that the solvent–solvent interactions were by far the most costly computation
in the simulation, taking roughly 95% of the total force-call time. Hence we expect that performing
the multiple timestep version of g-BAOAB (based on a solvent–solute splitting) will in practice
be only moderately more costly than a standard constrained Langevin scheme, given an efficient
implementation. (Additional discussion of efficiency is taken up in the conclusion.)

Results are computed from 10 independent trajectories of fixed time 5 ns, using a friction of
0.5 ps−1 and using one RATTLE step for the A update in g-OBABO and g-BAOAB. In figure 4
we plot the error in the average potential energy observed in the simulation, when compared
to a baseline result computed from twenty trajectories using the Tinker thermostat at a timestep
of 0.5 fs.

All of the standard Langevin schemes (without multiple force calls) became unstable
beyond a timestep of 4 fs; however, the g-BAOAB scheme demonstrates an order of magnitude
improvement in the observed error in the scheme. It is notable that even when run at 4 fs, the
g-BAOAB scheme is still over four times more accurate than conventional schemes run at half
the timestep. However, increasing the number of solute calls evidently doubles the stability of the
schemes, with a modest impact on the wall clock time in an efficient implementation.

When using three protein steps per timestep we were able to run stable simulations at stepsizes
of up to 10 fs. As this was the limit of stability for the solvent-only case (demonstrated in §6), we
would not expect any further stability increase beyond this point. The scheme also made larger
errors in average potential energy for runs with stepsize above 8 fs. The mean observed error at a
stepsize of 9 fs was 102 kcal mol−1 (against a total energy of around −4240 kcal mol−1).

An unexpected result is that using more solute steps per timestep appears to slightly increase
the reported error in average potential energy. As we are effectively using a smaller timestep
for the solute dynamics, it would be reasonable to expect an improvement in overall accuracy
compared to the more general g-BAOAB scheme. However, this result can be explained given
the framework we have developed. Using more solute steps alters the sequence of Fokker–Planck
operators that characterize the evolution of measure for a particular scheme. In the unconstrained
dynamics, the BAOAB scheme is a special case of the five-term palindrome sequences that can be
shown to exhibit special cancellations that reduce the total observed error. Changing the method
alters the resulting propagation of distribution and appears to destroy the structure inherent in
the operator expansion that allows these cancellations.

We also compare the rate of decay of the autocorrelation function for an indicator function of
the φ dihedral angle of the alanine dipeptide protein. We use the indicator function f (φ) where

f (φ)=
{

1 −100<φ <−20

0 otherwise

and compute its autocorrelation function from sixteen 5 ns trajectories, generated using the
standard Tinker scheme at 1 fs. This indicator approximately marks a region covering one free
energy well in the φ coordinate, as is shown in figure 5. In an effort to reduce the overall sampling
error, we fit the averaged curves for each scheme to a decaying exponential function (using
MATLAB’s fit function) and compare the resulting exponents. The normalized exponents are
plotted in figure 6.

Despite the noise in computing the autocorrelation function, the g-BAOAB method (both
variants) gives agreement in the integrated autocorrelation time (within sampling error) up to
around 8 fs. With three solute steps, the method can be pushed to 9 fs, while at 10 fs a significantly
poorer result is obtained, with diffusion happening much faster than expected. This is likely due
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to the effect of bias introduced into the distribution lowering the free energy barriers present in
the system, thus changing the timescales observed in barrier crossings.

To show this effect, we estimate the height of the free energy barrier (marked in the right
plot of figure 5) for −180<φ <−40. We plot the results in figure 7, with the baseline result of
1.76± 0.01 kcal mol−1 denoted with a dashed line. We recover a good estimate for the g-BAOAB
method with stepsizes up to around 9 fs. In contrast, for example, the Tinker scheme performs
poorly at the maximum 4 fs stepsize, with an error beyond 10%, contributing to an increased
diffusion across the barrier.

In this example the constraint topology of the solute molecule is relatively simple, consisting
of a number of small decoupled, tree-structured groups of atoms. The constraints are therefore
quite easy to maintain and it was only necessary to use a single RATTLE step in each A piece to
maintain good stability. We expect that if more bonds (or bonds and angles) are constrained, then
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Figure 7. The estimated free energy barrier height in theφ coordinate is plotted as the stepsize is varied for each scheme. The
g-BAOABmethod is stable and accurate to stepsizes above 8 fs, giving a substantially correct effective free energy barrier height.

the resolution of the constraint geometry will become more delicate and likely necessitate a more
accurate approximation of the geodesics.

8. Conclusion
The geodesic BAOAB method offers both accuracy and stability enhancements for the
biomolecule in atomistic solvent. The accuracy improvement due to the use of the g-BAOAB
method (without the solvent–solute splitting) at a 4 fs timestep, the largest stepsize usable by most
standard constraint algorithms, is around one order of magnitude for configurational averaging
(see figure 4). This is consistent with our experience of the corresponding unconstrained scheme
[26] and indicates that the g-BAOAB method is the proper analogue of BAOAB for constrained
systems.
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When simulations are performed in a pre-converged setting (in which sampling error,
rather than perfect sampling bias, is the main obstacle) the stability rather than the accuracy
of the method becomes central. By combining g-BAOAB with a multiple timestepping
procedure, the constrained bio-MD stability threshold can be reliably lifted to around 8 fs.
Implementing the large timesteps efficiently requires separation of solvent and solute force
computations and the efficient treatment of neighbour lists. In our unoptimized Tinker
implementation, we found that the cost of a full timestep using our 8 fs (with two solute steps) g-
BAOAB method was about 20% greater than a 4 fs step of the standard Tinker scheme. However,
we attribute much of the difference to computational work in the updating of neighbour lists
(Tinker performed this operation for the full system at each intermediate force call, regardless
of which atoms actually needed updating) and the small size of the alanine dipeptide system.
In larger systems and with moderate optimization of the force calculation, we would expect the
overhead to be no greater than around 10%. On the other hand, careful attention to some of the
figures of the last section (see, e.g. figure 7) suggests that the stepsize for the standard algorithms
should be limited to less than around 3 fs whereas g-BAOAB appears to be robust at 8 fs, so the
net efficiency gain is likely to be more than 100%.

The scheme proposed here incorporates three separate mechanisms: (i) the more accurate
approximation of geodesics, (ii) the use of a solvent–solute force decomposition in RESPA-style
multiple timestepping, and (iii) the fortuitous cancellation of errors in the invariant distribution
because of the specific ordering of the component parts (BAOAB). It is difficult to completely
separate the roles of each aspect. For example the constraints needed to be resolved once per
solute step, so they are in effect more accurately treated at the large stepsize whenever solvent–
solute splitting is used. We conjecture that many other integrators could be stabilized by the
geodesic integration procedure and the use of solvent–solute splitting, but this only makes sense
provided the sampling bias due to discretization error can be controlled. For example, using more
accurate resolution of the geodesics (five RATTLE steps) improved the stability of the g-OBABO
method for TIP3P water, allowing stepsizes to be increased substantially, but with much higher
sampling bias than for g-BAOAB.

Currently there is demand for algorithms that scale to much larger molecular sizes. In the case
of a biomolecule in solvent, this involves more efficient treatment of the long range electrostatic
forces, typically using Particle-Mesh Ewald and domain decomposition techniques. Restrictions
in the way this is implemented within the Tinker package prevented us from performing
simulations using Ewald summation within the solvent–solute splitting. Ewald summation leaves
the essential solvent–solute dynamics in the vicinity of the biomolecule to be handled in a detailed
atomistic model (i.e. our solvent–solute and geodesic integration methods would still certainly
apply to this part). Regardless of the methods used, the solvent-related interactions remain the
dominant part of a typical biomolecular simulation.

A natural question raised by the current work is where the next barriers lie. Our simulations
constrained only the bond stretches involving hydrogen atoms. It is likely that the stepsize
could be further increased (to 10 fs or higher) by incorporating additional constraints on all
bond stretches or even angle bonds, although there is a risk that these may in some cases alter
potentially important dynamical processes. There is nothing to prevent our technique from being
combined with a coloured noise thermostat [57] and other improvements [18,58] to increase
the stepsize further, albeit at the cost of additional algorithmic complexity, however we note
that those methods generally encounter stability thresholds above about 12 fs due to the out of
plane libration mode and other intermolecular interactions, so breaking this barrier would likely
require significantly changes in methodology. It is unclear whether the substantial additional
complexity of designing a method to bridge to 12 fs would be justified by the relatively slender
efficiency gains.

Langevin dynamics is not the only possible choice for thermostatted MD. A recent article of
Peters et al. [45] addressed some other viable canonical sampling methods, including ‘impulsive’
methods which randomize selected velocities, as well as DPD-like thermostatting schemes, also
in the presence of constraints. Another family of approaches is based on ‘degenerate thermostats’
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which have a relatively mild perturbative effect on dynamical properties [55,59]. Since our
methods are modular and based on easily available functionalities they can also be combined
with these alternative thermostats.

The methods presented here are designed to be easy to implement in standard molecular
software packages. Implementation is currently being performed by the authors in the
LAMMPS software package (http://www.lammps.sandia.gov). Moreover, the g-BAOAB scheme
is also currently being implemented in the Molecular Integrator Software Tools package of
the ExTASY project (http://www.extasy-project.org). Using MIST, the g-BAOAB algorithm
will be available in conjunction with AMBER (http://www.ambermd.org) and Gromacs
(http://www.gromacs.org) (with support planned for many other codes). A separate NAMD
(http://www.ks.uiuc.edu/Research/namd/) implementation is in progress.

Data accessibility. The Tinker code used for these experiments is available at http://datashare.is.ed.ac.uk/
handle/10283/1952, see the supplementary information for details.
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Appendix
In order to aid implementation we write the algorithms using in situ substitution. We write
F(q)=−∇U(q) for the vector of forces. The constraint functions are gj, j= 1, 2, . . . , m and we write
λ or μ for a vector of m Lagrange multipliers used to satisfy either the constraints or the co-
tangency conditions. Gj =∇gj(q) is the normal vector to the jth constraint surface at the point q.

We introduce useful constants aj = exp(−jγ δt/2) and bj =
√

kBT(1− a2
j ), and denote vectors of i.i.d.

normal random numbers as R. Where more than one vector of random numbers R is required per
step, the vectors are always uncorrelated.

The methods all rely on projections onto the manifold M, defined by the constraints

q ∈M⇔ gj(q)= 0, j= 1, 2, . . . , m,

and/or the co-tangent space T∗qM defined the corresponding linear constraints on p:

p ∈ T∗qM ⇔ Gj(q)TM−1p= 0, j= 1, 2, . . . , m.

In order to integrate the geodesic drift step, we use Kr iterations of the RATTLE integrator
without the force term, the combination of SHAKE and RATTLE projections, a functionality
available in many major codes. We write the function A(·) which performs this step in detail
below:

function (Q, P) :=A(q, p, δt):∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p∗ ← p+∑
j λjGj(q )

Q← q+ δtM−1p∗ ∈M
where λ is chosen so that Q ∈M, i.e. so that gj(Q)= 0, j= 1, 2, . . . , m,
P← p∗ +

∑
j μjGj(Q) ∈ T∗QM

where μ is chosen so that P ∈ T∗QM, i.e. so that Gj(Q)TM−1P= 0, j= 1, 2, . . . , m
return (Q, P )

end

A link to download the Tinker code used in this article is given in the supplementary material.
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g-BAOAB

p← p+ δt
2 F(q )+∑

j μjGj(q ) ∈ T∗qM,

For k from 1 to Kr do:

(q, p )←A
(

q, p, δt
2Kr

)
end do

p← a2p+ b2M1/2R+∑
j μjGj(q ) ∈ T∗qM,

For k from 1 to Kr do:

(q, p )←A
(

q, p, δt
2Kr

)
end do

p← p+ δt
2 F(q )+∑

j μj∇gj(q ) ∈ T∗qM,

g-BAOAB with solvent–solute splitting
We write the force as F(q)= Fp(q)+ Fs(q), where Fs denotes the force from all solvent–solvent
interactions, and Fp the remaining solute–solute and solvent–solute interactions. Each iteration
we use Kp > 0 evaluations of Fp, where choosing Kp = 1 reduces this method to the g-BAOAB
scheme written above.

p← p+ δt
2 Fs(q )+∑

j μjGj(q ) ∈ T∗qM,

For j from 1 to Kp do:
p← p+ δt

2Kp
Fp(q )+∑

j μjGj(q ) ∈ T∗qM,

For k from 1 to Kr do:

(q, p )←A
(

q, p, δt
2KrKp

)
end do
p← a2/Kp p+ b2/Kp M1/2R+∑

j μjGj(q ) ∈ T∗qM,
For k from 1 to Kr do:

(q, p )←A
(

q, p, δt
2KrKp

)
end do
p← p+ δt

2Kp
Fp(q )+∑

j μjGj(q ) ∈ T∗qM,

end do

p← p+ δt
2 Fs(q )+∑

j μjGj(q ) ∈ T∗qM,

g-OBABO
Note that this scheme could also be implemented in conjunction with solvent-solute splitting, if
desired, in a similar fashion as in the previous algorithm.

p← a1p+ b1M1/2R1 +
∑

j μjGj(q ) ∈ T∗qM,

p← p+ δt
2 F(q)+∑

j μjGj(q ) ∈ T∗qM,

For k from 1 to Kr do:

(q, p )←A
(

q, p, δtKr

)
end do

p← p+ δt
2 F(q )+∑

j μjGj(q ) ∈ T∗qM,

p← a1p+ b1M1/2R2 +
∑

j μjGj(q ) ∈ T∗qM,
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MEVME
This is the Midpoint Euler–Verlet–Midpoint Euler algorithm as described in [28].

p←
(

1+ δt
4 γ

)−1 ((
1− δt

4 γ
)

p+
√
δtγ
β

M1/2R1

)
+∑

j μjGj(q) ∈ T∗qM,

p← p+ δt
2 F(q )+∑

j λjGj(q),
q← q+ δtM−1p ∈M,

p← p+ δt
2 F(q )+∑

j μjGj(q) ∈ T∗qM,

p←
(

1+ δt
4 γ

)−1 ((
1− δt

4 γ
)

p+
√
δtγ
β

M1/2R2

)
+∑

j μjGj(q) ∈ T∗qM.

Tinker default
This scheme is used when the integrator flag is set to stochastic in the Tinker package
(http://dasher.wustl.edu/tinker/). It is a modification of the algorithm found in [53], with
appropriate constants

κ1 = 1− a2

γ
, κ2 = δt− κ1

γ
, κ3 =

√
kBTκ5

γ
, κ4 = (1− a2)2√

κ5(1− a4)
,

κ5 = 2γ δt− 3+ a2(4− a2).

Note that for small values of γ δt care must be taken in evaluating some expressions for the κi to
ensure numerical stability.

pold← p
p← a2p+ 1

2κ1F(q)
q← q+ κ1M−1pold + κ2M−1F(q)+ κ3M−1R1

p← p+∑
j λjGj(q),

q← q+ δtM−1 ∑
j λjGj(q) ∈M,

p← p+ 1
2κ1F(q)+ b2

(
κ4R1 +

√
1− κ2

4 R2

)
+∑

j μjGj(q) ∈ T∗qM, .
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