
An efficient multiple time-scale reversible

integrator for the gravitational N-body

problem

Ben Leimkuhler ∗,1

Abstract

A large gravitational (or classical atomic) N -body simulation typically includes fast
binary stars, planet-moon systems, or other tightly bound objects, demanding a
small timestep and effectively limiting the time interval over which simulation can
take place. While ad-hoc averaging schemes have been used before, these are gen-
erally neither symplectic nor reversible, impairing their long time-interval stability
properties. In this article, we describe the design of a powerful reversible integra-
tor based on partitioning, averaging, reversible adaptive timestepping, and smooth
force decomposition. This method also incorporates a modification of the reversible
averaging method of [8] based on an interpolation of the forces acting on the fast
variables which is potentially much more efficient than the original method.

Key words: N-body problems, Hamiltonian systems, time-reversible
discretization, averaging.

1 Introduction

Gravitational N-body problems were some of the first applications of numerical anal-
ysis, with a substantial amount and variety of work on the topic appearing long
before the advent of the modern computer. In the first half of the last century, in
particular, research on the numerical solution of differential equations by Brouwer,
Cowell, Kutta, Milne, Moulton, Runge, Störmer, and others was largely motivated
by the demands of astronomers for accurate orbits for the planets, the moon and
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comets. It is a testament to the depth and importance of this topic that the design
of numerical methods for gravitational N-body problems remains an active area of
research, with a great deal of study being conducted to understand the formation,
structure and long-term evolution of planetary and stellar systems [1–5].

When a gravitational N-body system includes fast oscillatory components due to
tightly bound pairs of bodies (or binaries), an efficient numerical procedure for sim-
ulating the dynamics of the system must treat the fast components differently from
the other variables. One option is to collapse a binary to a mass point, an approx-
imation which is adequate for many purposes. On the other hand, the presence of
slowly evolving (or even fixed) distant bodies will lead to changes in the orbit of the
binary, potentially eventually destabilizing the pair in question or affecting its inter-
actions with other fast components in the system. While formulae for the fluctuation
in eccentricity can be developed, these approximations cannot fully account for all
the possible complex interactions in a large multi-body system.

As an alternative to standard numerical methods, it is natural to seek some sort
of multirate [9] or multiple timestepping [10,11] scheme. In multirate (sometimes
individual timestep [6]) methods, fast variables are propagated with smaller stepsize.
In multiple timestepping, popular in molecular dynamics, the potential energy is
decomposed into strong and weak terms, and all bodies in the system are evolved
using only the strongest forces and a small timestep, with occasional kicks due to the
weaker forces. This is closely related to the mapping method of Wisdom and Holman
[12]. Unfortunately, both multirate and multiple timestep methods lead to stepsize
resonances, in practice severely limiting the size of a timestep in proportion to the
shortest wavelength.

Averaging techniques [13] have been found to substantially improve the situation,
although in molecular dynamics, the increase in the stable timestep is only a factor
of about two at most [14]. A new class of averaged methods was suggested in [8]. This
method relies on a decomposition of the variables of the system into fast and slow
components (as in multirate methods), an accurate fast integration, and a carefully
chosen averaging of the forces acting on the slow variables. These methods do not
exhibit resonances, at least for certain choices of the averaging interval, and have
enabled stable long-term integrations at large timesteps.

One of the positive features of multiple timestepping is that it can be done in a
symplectic framework, that is, preserving the two form

∑

i dqi ∧ dpi with respect
to positions q1, . . . , q3N and canonically conjugate momenta p1, . . . , p3N . Numerous
recent studies have demonstrated the significance of this conservation property for
the stability of a numerical simulation. Reversible methods, too, have been found to
be effective in practice, although there are still gaps in the understanding of these
methods at present. It is known, for example, that reversible methods exhibit linear
error growth when applied to integrable systems [15].
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The idea of the method described herein is to combine the advantages of a reversible
integrator for the slow variables with a stable treatment of the tightly coupled fast
dynamics, using appropriate timesteps and methods for each problem. The particular
challenges associated with gravitational dynamics include (1) the need for adaptive
stepsizes, and (2) the need for regularization in close approaches. We argue here that
various techniques such as reversible variable stepsizes and regularization can (and
must) be combined with the reversible averaging method to generate stable long-term
simulations with potentially dramatic benefits in efficiency.

2 The Reversible Averaging Method

We briefly summarize the reversible averaging method; more details may be found in
[8]. Consider a conservative system with Hamiltonian

H(q, p, θ, π) =
1

2
pT M−1p +

1

2
πT M̂−1π + V (q, θ). (1)

Observe that the differential equations on this Hamiltonian are

d

dt
q =M−1p, (2)

d

dt
θ = M̂−1π, (3)

d

dt
p =−∇qV (q, θ), (4)

d

dt
π =−∇θV (q, θ). (5)

While there are several approaches to the derivation of symplectic integrators, the
best methods are generally constructed from a splitting of the Hamiltonian. Another,
related, class of schemes can be constructed by a symmetric concatenation of flows
on components of the vector field itself.

Denote the entire vector of phase variables by z and the vector field, i.e. the right
hand side of (2)–(5), by F = F (z). Now introduce a splitting of the vector field F as
follows:

F (z) = F1 + F2,
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−∇θV (q, θ)





















.

A reversible method could be constructed by symmetric composition of the flows on
these two vector fields, i.e., by integrating the vector field F1 for a half timestep, then
integrating F2 for a full timestep, and finally integrating F1 again for half a timestep.
This method would require the following steps. First the “slow momentum variable”
p would be pushed forward for a half-step:

pn+1/2 = pn −
h

2
∇V (qn, θn).

During the propagation of F2 observe that p is fixed and q moves along a straight
line defined by

q̄(t) = qn + tM−1pn+1/2.

At the same time, we must evolve π and θ, the fast variables, according to the
differential equations

d

dt
q = M̂−1π,

d

dt
p =−∇θV (q̄(t), θ).
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Observe that this represents a fast propagation step along a linearly evolving slow
dynamic, i.e. the solution of a time-dependent Hamiltonian

Hfast(θ, π; q̄) =
1

2
πT M̂−1π + V (q̄(t), θ).

This fast propagation step would typically require implementation of a further nu-
merical integration, and would ultimately result in the computation of θn+1 and πn+1.
We can also compute the slow variable position at the end of the timestep:

qn+1 = qn + hM−1pn+1/2.

Finally, the slow momentum would be updated by the formula

pn+1 = pn+1/2 −
h

2
∇V (qn+1, θn+1).

This method has several apparent advantages. First, it allows a Störmer-Verlet like
integration of the slow variables, but places no restriction on the fast variable prop-
agation. On the other hand, the method exhibits resonant instabilities due to an
interaction between the fast dynamics and the long-timestep numerical propagation.
Effectively, this can be seen to restrict the usable timestep to a small multiple of the
largest timestep which one could expect to use with a standard explicit method such
as the Störmer-Verlet method. A great improvement in the properties of the integra-
tor can be obtained by combining the above scheme with an averaging over the fast
dynamics during the slow propagation. The reversible averaging method computes a
timestep (stepsize h) from time level n to time level n + 1 as follows:

Algorithm 1. The Reversible Averaging Method.

(1) Propagate the fast variables, then push the slow variables q using a Störmer-
Verlet half-step in an averaged slow force:

pn+1/2 = pn −
h

2

h/2
∫

0

∇V (qn, θ+
n (t))dt.

Here θ+
n(t) is obtained by solving the fast Hamiltonian from initial conditions

(θ, π) = (θn, πn) with fixed q, i.e. by solving Hfast(θ, π; qn).
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(2) Next, propagate the vector field F2 for a timestep as in the method discussed
previously (i.e. propagating the fast variables under Hfast while pushing q along
a linear path).

(3) pn+1 = pn+1/2 −
h

2

0
∫

−h/2

∇V (qn, θ−n−1(t))dt,

where θ−n−1 is obtained by solving Hfast(θ, π; qn+1) backwards in time from the
step endpoint.

The reversible averaging method has been analyzed in [8] and shown to be resonance-
free for a two degree of freedom linear model problem. Numerical experiments were
performed on linear and simple nonlinear Hamiltonian systems confirming this prop-
erty. In the sequel we will attempt to apply this method in a model setting arising in
gravitational dynamics.

3 Gravitational Model Problem

Gravitational N-body problems arise in stellar and solar system dynamics. Issues
for numerical integration of such problems are discussed in [6,7,12]. As a first step,
we consider a heterogeneous N-body problem based on distance potentials only and
consisting of isolated bodies and a few spatially localized bound pairs of bodies (bi-
naries). It is to be understood that the techniques developed here are applicable to
a much wider class of gravitational problems, but it is conceptually simpler to focus
on a sub-class.

The potential energy of the system divides into four terms: (1) the internal potential
energies of the binaries, (2) potentials between isolated bodies, (3) potentials be-
tween a body and a binary, and (4) potentials between pairs of binaries. Our guiding
assumption is that most of the interaction terms between bodies and binaries are
relatively weak compared to the binary coupling, so that if all binaries were replaced
by singlets, the simulation could be conducted with a substantially larger timestep.

The simplest representative situation is a three-body system modelling a binary in
interaction with a singlet. Suppose q1, q2 are the positions of the binary pair (corre-
sponding momenta p1, p2), and q3 is the position of the third body, so the kinetic and
potential energies can be written

T =
1

2

3
∑

i=1

mi

∣

∣

∣

∣

∣

d

dt
qi

∣

∣

∣

∣

∣

2

, V = φ12(|r12|
2) + φ13(|r13|

2) + φ23(|r23|
2), (6)

where rij = qi − qj.
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We will assume that the masses of the bodies are ordered m1 < m2 < m3 and the
initial conditions are such that the first and second bodies are bound and orbiting
the third body, so that the orbit has the appearance shown at left in Figure 1. (In
this diagram, the origin has been fixed at the coordinates of the heavy third body.)

−2 0 2 4 6
−3

−2

−1

0

1

2

3

Fig. 1. A sample orbit of a three-body problem (left) with a close up of the dynamics over
time (right). The thin curve is the traced orbit of the light body (q1), the solid heavy curve
represents the motion of q2 and the broken heavy curve is the motion of the centre of mass
of the q1, q2 subsystem.

Note that the motion of the centre of mass of the q1, q2 pair, depicted by the heavy
broken line on the right in Figure 1, is slowly varying. It is this variable that would
be treated as the slow variable in the reversible averaging method.

4 Internal Coordinates

As we shall see, it is advantageous in the implementation of the algorithm to work
in an internal coordinate representation for local groups of bodies. These coordinates
provide an elementary separation of scales and also aid the efficient implementation
of the reversible averaging method. The expansion of the potential in terms of inter-
nal coordinates for the binary and an interaction potential with external bodies is
straightforward. The three-body model is adequate to demonstrate this.

We first define (barycentric) coordinates

q̄ =
m1q1 + m2q2

M
, ∆ = q2 − q1,
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where M = m1+m2. In these coordinates, the kinetic energy metric remains diagonal,

T =
1

2
M

∣

∣

∣

∣

∣

d

dt
q̄

∣

∣

∣

∣

∣

2

+
1

2
M̂

∣

∣

∣

∣

∣

d

dt
∆

∣

∣

∣

∣

∣

2

+
1

2
m3

∣

∣

∣

∣

∣

d

dt
q3

∣

∣

∣

∣

∣

2

,

with M̂ the reduced mass (M̂ = (1/m1 + 1/m2)
−1), and the potential energy is now

V = φ12(|∆|
2) + φ13(|q̄ − q3 −

m2

M
∆|2) + φ23(|q̄ − q3 +

m1

M
∆|2).

Taylor series expansion leads to the following expression:

V = φ12(|∆|
2) + Φ(0)(q̄ − q3) + Φ(1)(q̄ − q3) ·∆ + ∆T Φ(2)(q̄ − q3)∆ + . . . , (7)

where Φ(0) is scalar valued, Φ(1) : R3 → R3, Φ(2) : R3 → R3×3, and so on. These first
few functions are (with r = q̄ − q3)

Φ(0)(r) = φ13(|r|
2) + φ23(|r|

2),

Φ(1)(r) = −2
[

m2

M
φ′13(|r|

2)−
m1

M
φ′23(|r|

2)
]

,

and

Φ(2)(r)=

[

(

m2

M

)2

φ′13(|r|
2) +

(

m1

M

)2

φ′23(|r|
2)

]

I

+2

[

(

m2

M

)2

φ′′13(|r|
2) +

(

m1

M

)2

φ′′23(|r|
2)

]

rrT .

We now specialize to the case of gravitation,

φij =
−Gmimj

|qi − qj|
,

for which the formulas in the expansion simplify considerably. In particular, we find
that the odd order terms (in powers of ∆) vanish:

Φ(0)(r) = −
GMm3

|r|
,

Φ(1)(r) = 0,
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and

Φ(2)(r)=
GM̂m3

2
|r|−3(I − 3

rrT

|r|2
).

We see that the terms of the potential series can be expected to fall off extremely
rapidly in this case, since the successive terms involve not only increasing (even)
powers of ∆, but also odd reciprocal powers of the interbody separation r. Moreover,
it would not be terribly difficult or costly to include additional terms in the series
of orders O(|∆|4|r|−5) and beyond if accuracy were found to be compromised by
truncation to terms of second order in ∆.

Extending the force expansion to the case of a single binary in interaction with many
distant singletons is straightforward. We simply add terms of the same form for each
distant pair, thus for a collection of N bodies, the first two of which are bound, we
obtain an expansion of the same form as (7), but with

Φ(0) = −
N

∑

j=3

GMmj

|rj|
,

Φ(1) = 0,

and

Φ(2) =
N

∑

j=3

GM̂m3

2
|rj|

−3(I − 3
rjr

T
j

|rj|2
),

where rj = q̄ = qj.

4.1 Binary-binary interaction

When the system consists of two binaries in interaction, the potential series becomes
slightly more complicated, but, in the case of gravitation, the same observations hold
regarding the fall-off of terms. Let mi, i = 1, . . . 4, represent the masses of the four
bodies, qi and pi the position and momemtum vector, respectively, of the ith body,
and define

M1 = m1 + m2, M̂1 = (1/m1 + 1/m2)
−1,

M2 = m3 + m4, M̂2 = (1/m3 + 1/m4)
−1.
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Define further

q̄1 =
m1q1 + m2q2

M1

, ∆1 = q2 − q1, q̄2 =
m3q3 + m4q4

M2

, ∆2 = q4 − q3.

With r = q̄1 − q̄2, we next set

∆13 =−
m2

M1
r ·∆1 +

m4

M2
r ·∆2,

∆14 =−
m2

M1

r ·∆1 −
m3

M2

r ·∆2,

∆23 =
m2

M1

r ·∆1 +
m4

M2

r ·∆2,

∆24 =
m2

M1
r ·∆1 −

m3

M2
r ·∆2.

The kinetic energy in the internal coordinates is

T =
1

2
M1|

d

dt
q̄1|

2 +
1

2
M̂1|

d

dt
∆1|

2 +
1

2
M2|

d

dt
q̄2|

2 +
1

2
M̂2|

d

dt
∆2|

2,

and a little work shows that the potential expansion can be written, to terms of
second order, in the form (the superscript indicates the order of truncation of the
series expansion):

V (2) =φ12(|∆1|
2) + φ34(|∆2|

2)

+
∑

α,β

φαβ(|r|2)

+2
∑

α,β

φ′αβ(|r|2)∆αβ

+
∑

α,β

(φ′αβ(|r|2)|∆αβ|
2I + 2φ′′αβ(|r|2)|r ·∆αβ|

2,

where the sums extend over pairs α, β with α ∈ {1, 2} and β ∈ {3, 4}.

In the case of gravitation, many terms again fall out, and we arrive at (still to second
order in ∆1 and ∆2)

V (2) =−
GM1M2

|r|
−

Gm1m2

|∆1|
−

Gm3m4

|∆2|

+GM̂1M2|r|
−3∆T

1 (I − 3
rrT

|r|2
)∆1 + GM1M̂2|r|

−3∆T
2 (I − 3

rrT

|r|2
)∆2. (8)
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Note the extraordinary elimination of cross terms (involving products of ∆i and
∆j) in this expression, something which only happens due to the special nature of
the gravitational potential. In the general case, the bodies will divide into isolated
particles and close pairs, and the potential energy can be decomposed into a sum of
terms of the forms (7) and (8). As many terms as needed may be maintained in this
series. In the case of a system of gravitating binaries and isolated bodies, we may use
a unified notation, writing

V (2) = −
∑

i<j

GMiMj

|rij|
+

∑

i∈B

∑

j 6=i

GM̂iMj|rij|
−3∆T

i (I − 3
rijr

T
ij

|rij|2
)∆i, (9)

where B is a set of indices of the binaries, Mi is either the mass of an isolated body or
the average of masses of the corresponding binary pair, and M̂i is the reduced mass
of the ith binary.

5 Resolution of binaries: averaging and propagation

The reversible averaging algorithm (Algorithm 1) requires accurate integration of the
binaries, both for averaging and during propagation. The averaging in steps 1 and 3
is performed with respect to the dynamics of the binaries in a fixed field of distant
bodies. Here we examine the cost of performing these steps and show that these can
be implemented in an efficient way.

Following coordinate transformation, the Hamiltonian is written in terms of the (sup-
posed slowly varying) positions of isolated bodies and centers of mass of the binaries
together with the fast rotating separation vectors for each pair. As we have seen, the
potential can be written in the form of a series of terms in ∆i with coefficient func-
tions of the slowly varying vectors rij. In the original reversible averaging method,
these slowly varying vectors would be evolved along a linear path r̂ij(t), so the force
would need to be computed at each step of the fast evolution. This approach would
eliminate any advantage that we might hope to achieve from the separation of scales.
To illustrate, suppose that r̄ij, 1 ≤ i < j < N represent the separation vectors of a
system of N binaries. The fast component for the ith binary evolves in the truncated
potential series

V
(2)
i = −

γ

|∆i|
+ ∆T

i Φ
(2)
i ∆i,
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with

Φ
(2)
i =

∑

j 6=i

GM̂iMj|r̄ij|
−3(I − 3

r̄ij r̄
T
ij

|r̄ij|2
).

During the first and third steps of Algorithm 1, Φ(2) would simply be held fixed and
the resulting system for ∆i then solved in a time-reversible way. Thus the i 3 × 3
matrices Φ

(2)
i are computed in a total of O(N 2) floating operations, but this need only

be done at the beginning (and end) of the slow timestep. Since the quadratic term
can be assumed to be relatively weak compared to the Coulombic term, it is natural
to use a simple Trotter factorization for this stage, consisting of a half ∆τ step in
the quadratic term, followed by a timestep with the fast kinetic energy + Coulombic
potential, then another half–step with the quadratic term. Of course the Coulombic
term yields a pure Kepler problem. We suggest solving this part using some sort of
fast Kepler solver, for example the method of [16] which is a second order, energy-
preserving symplectic-reversible discretization based on the Kustaanheimo-Stiefel lin-
earizing variables, a scheme which avoids transcendental function evaluations.

During the fast propagation stage in the middle of the timestep, the slow separation
variables r̄ij would normally be evolved along linear paths, leading to a much more
costly O(KN 2) calculation at each long timestep, where K is the number of fast
timesteps per long step. Here we propose instead the following modification: interpo-
late the potential energy (and force) instead of the slow variable. This is equivalent to
averaging each coefficient in the ∆ Taylor expansion; in this way, the second order ac-
curacy is preserved, but the calculation of the forces can be done with computational
complexity essentially independent of K.

Define

Φ
(2)
i [τ ] = (1− τ/∆t)Φ

(2)
i ({r̄0

ij}) + (τ/∆t)Φ
(2)
i ({r̄1

ij}).

The propagation algorithm is now almost identical to that of the forward and back-
ward averaging stages, except that in the first half step of the Trotter factorization,
the force term is

−Φ
(2)
i [kτ ]∆i,

while in the third stage, we use

−Φ
(2)
i [(k + 1)τ ]∆i.

These force evaluations are essentially ‘free, ’ in that they involve very little additional
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work at each step, compared to the other costs involved (for example, no new square
roots, other than those for the binary separations would need to be calculated at
the intermediate steps). Note that this modification of the reversible averaging does
not effect the stability analysis (or lack of resonance) since the modification only
constitutes a change in the case of nonlinear models.

5.1 Cost of the Force Averaging

For propagation of the slow variables, we must also compute the averaged force acting
on the slow variables due to the effects of distant bodies and binaries along the fast
averaging trajectories; the challenge is to do this efficiently. The force term for the
ith center of mass takes the form

Fi =−
∑

j 6=i

GM̂iMj[15|r̄ij|
−7(r̄ij ·∆i)

2r̄ij − 6|r̄ij|
−5(r̄ij ·∆i)∆i]

−
∑

j 6=i

GMiM̂j[15|r̄ij|
−7(r̄ij ·∆j)

2r̄ij − 6|r̄ij|
−5(r̄ij ·∆j)∆j]

with fixed slow variables {rij}. At first glance, it looks as though an O(N 2) force
calculation is needed for each fast step, resulting in an expensive O(N 2K) scheme,
but this computation can be made much more efficient by careful rearrangements as
we now show.

Let q̄i = (x̄i, ȳi, z̄i)
T be the coordinates of the ith center of mass, and denote by

Fx̄i
, Fȳi

, Fz̄i
the force acting on the corresponding coordinates. Finally let ∆

(k)
i =

(∆(k)
xi

, ∆(k)
yi

, ∆(k)
zi

)T represent the fast variable at the kth fast step. The average for the
first component of the force then takes the form

1

K

K
∑

k=1

Fxi
=−

1

K

K
∑

k=1

∑

j 6=i

GM̂iMj

(

15|r̄ij|
−7(r̄ij ·∆

(k)
i )2(xi − xj)−

6|r̄ij|
−5(r̄ij ·∆

(k)
i )∆(k)

xi

)

+GMiM̂j

(

15|r̄ij|
−7(r̄ij ·∆

(k)
j )2(xi − xj)− 6|r̄ij|

−5(r̄ij ·∆
(k)
j )∆(k)

xj

)

Let us consider each of the four terms of the summand separately. The first term can
be written as

−15G
1

K

K
∑

k=1

∑

j 6=i

M̂iMj|r̄ij|
−7(r̄ij ·∆

(k)
i )2(xi − xj)
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=−15G
1

K

K
∑

k=1

∑

j 6=i

M̂iMj(xi − xj)|r̄ij|
−7[∆

(k)
i ]T r̄ij r̄

T
ij∆

(k)
i

=−15G
1

K

K
∑

k=1

[∆k
i ]

T Aij∆
k
i ,

where

Aij =
∑

j 6=i

M̂iMj(xi − xj)|r̄ij|
−7r̄ij r̄

T
ij

is a 3 × 3 matrix that need only be computed once per long timestep. The com-
putational cost of this part of the calculation, including the terms for each i, is
O(N2 + NK).

For the second term, we have

6G
1

K

K
∑

k=1

∑

j 6=i

M̂iMj|r̄ij|
−5(r̄ij ·∆

(k)
i )∆(k)

xi

= 6G
1

K

K
∑

k=1

(αi(∆
(k)
xi

)2 + βi∆
(k)
xi

∆(k)
yi

+ γi∆
(k)
xi

∆(k)
zi

),

where

αi =
∑

j 6=i

M̂iMj|r̄ij|
−5(x̄i − x̄j),

βi =
∑

j 6=i

M̂iMj|r̄ij|
−5(ȳi − ȳj),

γi =
∑

j 6=i

M̂iMj|r̄ij|
−5(z̄i − z̄j).

each such coefficient must be computed only once per timestep, and the complexity
is again only O(N 2 + NK). The last two components embody the sum of the effects
of the distant binaries on the center of mass of the ith. Here we use the alternate
arrangement of the terms of the summation:

−15G
1

K

K
∑

k=1

∑

j 6=i

M̂iMj|r̄ij|
−7(r̄ij ·∆

(k)
j )2(xi − xj)

=−15G
∑

j 6=i

M̂iMj(xi − xj)|r̄ij|
−7 1

K

K
∑

k=1

r̄T
ij∆

(k)
i [∆

(k)
i ]T r̄T

ij
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=−15G
∑

j 6=i

M̂iMj(xi − xj)|r̄ij|
−7r̄T

ijBir̄
T
ij,

where

Bi =
1

K

K
∑

k=1

∆
(k)
i [∆

(k)
i ]T .

Since we must compute N such Bi each requiring O(K) work, then, with these
computed, the force calculation requires another O(N 2) steps to produce the result.
A similar story holds for the fourth term.

Thus we have succeeded in reducing the computational effort to O(N 2 + NK); for
large N and a number of fast timesteps K substantially smaller than N , the work
for the reversible averaging method will be only a little larger than that of a step of
a standard numerical method.

6 Numerical Experiment: a Three-Body Problem

Next, we describe the application of the method to a 3-body model problem. Our
purpose is to investigate the large timestep observed stability behavior of the method
in a gravitational application. In our experiments, we did not test the use of trun-
cated force expansions, but only the potential effectiveness of the reversible averaging
scheme for the 3-body model, using the barycentric separating coordinates described
in the text.

In each experiment, we integrated the system (6) with the heavy body fixed to the
origin using the same set of initial conditions, producing in each case approximations
to the orbit shown in Figure 1. In this simulation, the binary pair approaches the
origin, where the orbit is progressively disturbed by the heavy body. The standard
leapfrog-Störmer-Verlet integrator became unstable at a stepsize of approximately
h = 0.008. We implemented the reversible multiple time-scale integrator, using the
variable decomposition described in the previous pages.

Our initial observation was that the stepsize could be improved beyond the leapfrog
threshold, but only modestly. A representative simulation is illustrated in Figure 2.
Here the left hand diagram shows the planar positions of the bodies with the time
variable along the z-axis. The right figure shows the fluctuations in the energy vs.
time.

15



� � �
�

� ��
��

� �
� �
� �
� �
� ���

� � � � � � � � � � �	�
��
 �

��
  �

��
 

��
 � �

��
 �

��
 �	�

� �

�� �
�

� � ���

�����
�

Fig. 2. Integration of the 3-body model problem using reversible averaging. Left: a graph
of the planar positions of the particles with the time variable running along the z-axis with
inset showing a close up view. Right: the energy error vs. time showing the large spikes and
energy drift caused by close approaches of the two bodies to the fixed body at the origin.

Upon closer examination it was found that accuracy was impaired near the approach
of the binary to the origin. We can see the effect of such approaches in the right hand
side of Figure 2. The problem is that when using standard (fixed stepsize) leapfrog,
the slow dynamics of the centre of mass become unstable at a stepsize only slightly
above the stepsize needed to resolve the oscillators: in our terminology, this problem
would not have a strong separation between timescales.

The key to going further is to note that the Keplerian centre of mass dynamics
requires the use of a variable stepsize. We should rather compare variable stepsize
integration with and without the multiple scale decomposition. The natural way to
implement variable stepsize in this setting is based on a reversible variable stepsize
strategy [19]. Such methods and their implementation, analysis, extension to higher
order, etc., are treated in [19,18,15]. We do not discuss these methods here in detail,
but merely point out that, following [18], if Φh is an arbitrary reversible fixed stepsize
integrator, then the mapping from (zn, hn) to (zn+1, hn+1) defined by

zn+1/2 = Φhn/2(z
n+1/2)

h−1
n+1 + h−1

n = [g(zn+1/2)∆τ ]−1

zn+1 = Φhn+1/2(z
n+1/2)

is a time-reversible variable stepsize method. For our example, we used a time trans-
formation g of the form

g(z) = r3/2
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where r is the distance between the centre of mass of the binary pair and the origin.
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Fig. 3. Reversible averaging combined with time-reversible variable stepsizes (adaptive re-
versible averaging) improves the integration through approach to the origin and the drift
in energy. (In the fixed stepsize run (dash-dot) the long stepsize was 0.2; in the variable
stepsize calculation (solid), the same total number of long timesteps was used as in the
fixed stepsize calculation.)

With the reversible variable stepsize method, the results obtained are greatly im-
proved. We found that it was possible to carry out integrations stably with an av-
erage stepsize as much as 50 times the fixed stepsize leapfrog stability threshold. A
typical comparison is shown in Figure 3. More importantly, there is no evidence of
resonance in an extensive search. This is illustrated in Figure 4 which shows the en-
ergy error to timestep relationship. 1000 simulations on a fixed time interval [0, 100]
were performed to create this figure. As the long stepsize is increased, the number of
fast timesteps is increased proportionately, so that the same (inner) fast timestep is
used in each run.

The 3-body model problem possesses an adiabatically separated fast energy when the
separation of the q1q2 subsystem is sufficiently large. This adiabatic separation breaks
down in close approach, during which an exchange of energy takes place between the
Keplerian dynamics of the centre of mass of the binary and the dynamics of the
binary itself. In order to understand better the accuracy of the adaptive reversible
averaging algorithm, we looked at how accurately these transitions were computed
by the scheme. In Figures 5-7, the effect of the close approach on the adiabatic fast
energy (the Keplerian energy of the binary)is followed for three average long stepsizes
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Fig. 4. A timestep-error diagram for the adaptive reversible averaging algorithm shows no
sign of resonant instability in 1000 runs over a range of long stepsizes up to 50 times the
fixed stepsize leapfrog stability threshold.

(h̄ = 0.08, h̄ = 0.4 and h̄ = 0.8), and compared against a relatively accurate leapfrog-
computed trajectory.

Observe that at h̄ = 0.08 (four fast steps per long timestep), some accuracy is lost
during the transition itself, but—importantly—the correct fluctuation is recovered in
the fast energy. A similar situation is observed until h̄ = 0.4 (50 fast steps per long
timestep). Only at h̄ = 0.8 (long timestep 100 times the Adaptive Verlet stability
threshold) do we see a serious breakdown of the energetic transition.
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Fig. 5. Effect of the close approach on the adiabatic fast energy, comparing the adaptive
reversible averaging (h̄ = 0.08) and leapfrog (h = 0.002) integrators .
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Fig. 6. Effect of the close approach on the adiabatic fast energy, comparing the adaptive
reversible averaging (h̄ = 0.4) and leapfrog (h = 0.002) integrators .
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Fig. 7. Effect of the close approach on the adiabatic fast energy, comparing the adaptive
reversible averaging (h̄ = 0.8) and leapfrog (h = 0.002) integrators.

7 Conclusion

The theory and experiments given here offer convincing evidence for the potential
of the combined reversible averaging/reversible variable stepsize method for gravita-
tional N-body simulations, but much more remains to be done. More careful treatment
of the tidal effects (through the use of perturbation series) would likely be needed
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in solar system dynamics; this issue needs to be examined in detail, and for realistic
applications. An implementation that incorporates a better Kepler solver in the fast
propagator would be valuable in many applications. The switching idea of [17] might
be valuable for switching fast variables or for adapting the number of terms retained
in the perturbation series of the potential.
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