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TIMESTEP ACCELERATION OF WAVEFORM RELAXATION

B. LEIMKUHLER*

Abstract. Dynamic iteration methods for treating linear systems of differential equations are considered. It
is shown that the discretized Picard-Lindel6f (waveform relaxation) iteration can be accelerated by solving the
defect equations with a larger timestep, or by using a recursive procedure based on a succession of increasing
timesteps. A discussion of convergence is presented, including analysis of a discrete smoothing property main-
tained by symmetric multistep methods. Numerical experiments with a linear wave equation indicate that the

method can speed convergence.

1. Introduction. Much of modern chemical and physical research relies on the numerical
solution of various wave equations. Since these problems are extremely demanding of both
storage and cpu-time, new numerical methods and fast algorithms are needed to make optimal
use of advanced computers. The dynamic iteration or waveform relazation (WR) method [9,
11] is an iterative decoupling scheme for ordinary differential equations which can facilitate
concurrent processing of large ODE systems for applications such as VLSI circuit simulation
[6, 15] and partial differential equations [1, 4].

In this article, accelerated dynamic iteration schemes are used to solve systems of linear
differential equations, with emphasis on the ordinary differential equations arising from dis-
cretization of linear wave equations. Although our experiments use finite differences for the
spatial derivatives, other spatial discretizations could be used. For time discretization, we use
symmetric multistep methods, although other choices may also be appropriate. As is the case
for stationary iterative methods applied to spatially discretized elliptic PDEs, it is found that
finer fixed step (time) discretizations slow the convergence of the WR iteration, while large
timesteps can be used to resolve the slow modes. The idea that is explored here is to use
a coarse timestep on the defect equations to speed up convergence of the fine grid iteration.
Nevanlinna already pointed out [14, 13] that for general applications of WR it makes sense from
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an efficiency standpoint to use coarser discretization in the early sweeps (when the iteration
error is large), and then incrementally to refine the time discretization near convergence. Our
point of view is rather to vary the timestep to resolve different modes present in the solution,
using two time stepsizes (or multiple stepsizes). The current article is related to recent work of
Horton and Vandewalle [4] and Horton, Vandewalle and Worley [5] which considered space-time
multigrid methods for solving parabolic equations.

The new scheme will be referred to as timestep acceleration since it relies on adjustment of
the integration timestep to accelerate the dynamic iteration. This approach shares some features
of multigrid methods. For the convenience of the reader generally familiar with multigrid
methods, we outline the algorithm in the abstract setting of solving an unspecified dynamical

system as follows:

Accelerated Waveform Relaxation. Given: fine limestep h and an approximation u° lo
the solution with fired stepsize h.
1. Smoothing Starting from u°, perform a fixed number of iterations of a smoothing waveform
relaxation iteration with timestep h.
2. Correction Compute the defect (residual) in this solution on the fine time mesh.
If the timestep H = qh is sufliciently large, solve the discrete defect equation restricted
to the coarse time mesh directly (i.e. without relaxation).
Else recursively apply some number of iterations of the algorithm using stepsize H to
the defect equation restricted to the coarse time mesh.
Next, correct the solution after prolonging onto the fine time mesh.

3. Smoothing Apply a fixed number of iterations of the fine stepsize smoothing iteration.

(In §6, we present and analyze a more precisely defined version of this algorithm, TAWR..)
A major barrier to efficient solution of large scale wave equations is the need for small

timesteps. Due to the sequential character of standard ODE methods, this effectively reduces



the potential for parallel speedups. Compared to standard timestepping schemes, the method
discussed here directly addresses this problem by enabling the use of larger timesteps to recover
at least a portion of the dynamics. Another important obstacle to computation—particularly
in the case of high dimensional problems—is the necessary storage. The new method actually
exacerbates this problem since solution information at many points must be stored. However, in
waveform relaxation based on a block splitting, the storage is naturally segmented according to
the decoupling, so the scheme may be appropriate for a parallel computer based on a distributed
memory architecture.

Although standard analytical results for multigrid methods or coarse-grid acceleration are
typically developed for finite dimensional Hermitian positive definite problems, these can be
relaxed to give at least partial convergence results. In fact proving theoretical convergence
for timestep acceleration is easier than for standard multigrid due to the strong smoothing
properties of the Picard-Lindeldf operator (it is a contraction on small intervals). Analysis of
the behavior of the iteration on special linear model problems is also possible and is briefly
discussed here.

The scheme is found to work well in simple numerical experiments with linear wave equa-
tions. Although our experiments are conducted in one space dimension, nothing in principle

prevents application in higher dimensions (although many practical issues will need to be dealt

with).

2. Waveform Relaxation. Consider a second order linear system of differential equa-

tions

(1) i = Au, u(0) = wo, w(0) = 4o,

where the eigenvalues of the matrix A are assumed to lie in the left half plane. A special

case that we will frequently refer to is the 1-D wave equation Uy = U,, discretized with finite



differences on the unit square with periodic boundary conditions:

-2 1 o --- 0 1
1 -2 1 0
1 0 1 -2 1
A=
2 .
Az 0
0 1 -2 1
10 0 1 -2 |
A is called the discrete Laplacian. Here u = (ug(t),...un_1(¢))" is a vector of approximations
at nodes z;, 0 =0,..., N — 1 with ;47 = z; + Ax.

Another potential application is to the Schrodinger equation. Discretizing, for example,

with finite differences leads to

(2) %qx = —i(A+ V(1))¥ =: —iB(1)¥,

where A is the discrete Laplacian. If v(z,t)is the potential energy function of the corresponding
classical system, we have V(1) = diag(v(zo,t),v(21,1),...,v(zn_1,1)). In simplified settings
v(xz,t) is time-independent, hence so is V.

The waveform relaxation method for (1) is based on a splitting A = Ay — A_, and results

in ODE IVPs
(3) 't = At — AW ut1(0) = up, a1 (0) = .

For example, we might choose A, to be the diagonal of A (Jacobi splitting), a block-diagonal
part of A (block-Jacobi splitting), the lower triangular part of A (Gauss-Seidel splitting), etc.
Much work involving the discrete Laplacian in elliptic PDEs is based on Gauss-Seidel splitting
in red-black ordering. Another useful splitting is the damped Jacobi splitting where A, = %D,
with D the diagonal of A. The extreme case Ay =0, A_ = —A is called the Picard splitting.

When referring to (1) and (3) we will generally limit discussion to the case where A and
A4 are symmetric negative semidefinite matrices.

The WR iteration proceeds as follows: starting from a given initial waveform u® = u°(t)

(which may be constant), we solve (3) with = 0 as a forced linear system for u! over some
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time interval, say [0,7]. (This interval is referred to as the window). The function u! then
yields a forcing for the next iteration or sweep, and the process repeats. In practice, the sys-
tems are solved numerically over the entire interval, and the storage of the resulting discrete
approximation is an important drawback of the method which may place severe limitations
on the size of the time window. On the other hand, we gain in two ways: first, the systems
we solve at each iteration can be decoupled into problems of reduced dimension, and second,
the decoupled problems can often be solved on separate processors of a parallel computer. An
alternative approach would be based on solving the linear equations that result at each step
of a standard discretization using a parallel algorithm, however, depending on the computer
architecture employed, the flexibility in the choice of window size may reduce the overall com-
munication cost, e.g. by eliminating some of the time spent in initializing the transfer of data
between processors.

Preliminary convergence results for WR appear in the paper by Lelarasmee et al [9].
Miekkala and Nevanlinna [11, 12] and Nevanlinna [13] have developed an extensive theory for
studying waveform relaxation for linear systems. Lubich and Osterman proposed to combine
the WR method with spatial multigrid schemes [10]. Recent work by Horton and Vandewalle
[4] and by Horton, Vandewalle and Worley [5] has shown that a careful implementation of (spa-
tial) multigrid-WR methods for parabolic PDEs can provide excellent parallel speedups. The
use of waveform relaxation for solving hyperbolic partial differential equations and relations to

domain decomposition were explored by Bjorhus [1].

3. Mathematical Background. In this section we state some elementary results con-
cerning the iteration (3). The reader is directed to the papers of Nevanlinna and Miekkala for
basic theory.

The waveform relaxation method for (1) can be viewed as an iteration u/*! = Su! in
L%([0,T]). As shown in [11], p(S) = 0 implying superlinear convergence. On the other hand,

for stiff dissipative linear systems, it makes sense to allow T — oo in which case meaningful



spectral information is obtained [11]. Since the solution to the equations (1) and (2) does not
in general lie in L%([0,oc)), this approach must be modified. A reasonable practical approach
is that taken in [13] where an exponential weighting function e=°¢ is inserted into the usual L?

norm. For a > 0, the space L% is normed by

00 1/2
= | [ letutopa
0

and p, refers to spectral radius in that space.

If we take the Laplace transform of (3), we obtain:
At = Apaltt — Alil 4 ¢(2),

where ¢(z) = zu(0) + @(0). Define S(z) = —(221 — Ay)"tA_.

The following results are proved by Nevanlinna and Miekkala [11]:

pa(S) = max p(5(2))

Rez>a

= maxp(S(a+iy)),
yeR

which follows from the Paley-Wiener theorem (the second expression follows from a maximum

principle after a suitable remapping of the domain) and
[S]le = max[5(a +iy),
yeR

which follows from Parseval’s identity.

We now provide some simple estimates for the response of the iteration operator in weighted
2-norm.

First, consider the behavior of the solution operator £L7! = (D?I — A)™! of (1) in the
weighted space, where D = d/dt. Examining the spectral radius of the normal matrix L(z)™! =

(22 — A)~! along the line Rez = a, we find the eigenvalues are:

MZ.(Z):ZQ_AZ.7 ’L.2172,...71V7



where Ay, Ag, ..., ANy are the eigenvalues of A. Hence

1
la? — y? + 2ayi — A

1
VP +a? + X)) — 42X

i =

By maximizing these functions over y, we can compute the moduli of the eigenvalues of solution
operator in the weighted space.

THEOREM 3.1. Define

2o(1|/\‘|7 o < Vl’\i|
i i= '
pempw a > /]A

Then

pa(ﬁ_l): max fi;.

i=1,...N
In particular eigenvalues near zero have the strongest influence. When A is the discrete

Laplacian, or any symmetric negative semidefinite matrix with an eigenvalue at zero, we have
p(((a+ iyl — A)71) =1/a?.
We can use this to estimate the norm of the iteration matrix, since
(%= Ap) A < max il A-],

where the pi; are determined from Theorem 3.1 with A; the eigenvalues of Ay rather than A.

Asymptotic (o = Rez — 00) estimates for the relation between spectral radius of S(z) and
a are given in [8].

Let us consider the wave equations with periodic boundary conditions on the square as a
model problem. We will use damped Jacobi iteration with parameter w € (0,1]. In this case,
A, Ay and A_ are all diagonalized by the discrete Fourier transform, so we arrive readily at
the eigenvalues n;, j = 1...N of S(a + iy):

nj = 1Y
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where

1= 2z ((1-5) — contt). 05 = 2 (j ~ /N,

and

= o
z°+ wAx?

In this case the spectral radius can be readily computed. We have

Azy/w a< V2
. 22’ VwAz
max |u(a + iy)| = 1 0> 2
ye O[2_}_41)A2$2 ? — \/JAJJ
and
1 V2
S) = o 2wAz’ a< VWwAz
pa(S) = 1 a> Y2
1 2ens < Vs

We are interested in moderate weights a which we define to mean o < \/p(A). (Intuitively, this
corresponds to looking in the time domain on intervals greater than the smallest period of the
motion.)

In the standard theory, one uses the value of w in the damped Jacobi splitting to enhance a
smoothing property: a damping in the iteration of the modes corresponding to larger eigenvalues.
However, the important consideration for timestep acceleration is not the way in which the
smoother acts on fast “spatial” modes but rather the response of the smoother to high frequency
forcings. In fact, the real smoothing property we are interested in has to do with the shape of
the graph of p(S(a + ty)) as a function of y. For example, when a damped Jacobi splitting is
applied to solve the semidiscrete wave equation, we find that the spectral radius of § achieves

2

its maximum on Rez = a at the point (if a < NI

2
2 2
e
yta wAz?2

(orat y=0if a > \/\U_{Zr) The maximum is typically achieved well away from y = 0.



For the Picard splitting, it is easy to see rather that the maximum occurs at y = 0. In
this case, we say that the iteration has a smoothing property with respect to high frequency
forcings. It is not necessary to use a slowly converging splitting such as the Picard splitting
to obtain a good smoothing property. A typical feature of a good splitting for this purpose
is that A4 would have an eigenvalue at or near the origin. Thus the smoothing property of a
block-Jacobi splitting of the discrete Laplacian would improve with the block size.

To illustrate this smoothing concept, consider the time-dependent Schriodinger equation

(2). The iteration becomes

d
%qﬂ“ = —iB Ut 4+ iB_V'

We could again use a Jacobi or damped Jacobi splitting, but in practice, a more useful choice

might be
By = —(A+ V(ly)), B_ = (V(t) = V(to)),
or, more simply
By =-A, B_ =V(1).

After time discretization, these choices will lead to equations at each timestep which can be
efficiently solved by, for example, using a parallel implementation of the fast Fourier transform
(FFT).

Still another possibility is to work directly in the Fourier coefficients. Let QAQY = A,

where

Q = (an), Grn = e?ﬂi(m—l)(n_l)/N’

and

A = =21 + 2diag(1, cos(27/N), cos(4w/N),...,cos(2(N — 1)7/N)).



Set QW = ¥ so that the equations become

| =

U= —i(A4QV()QT)v.

u

t

We can then apply a Jacobi splitting to this problem. One finds that the diagonal of QV(t)QH

is dI where d = v(zg,t) + v(z1,0) + ...+ v(zn_1,1), SO
(4) By = —(A+d), B = (QV()Q" +dI).

The computation B_w can be implemented effliciently using the FFT.
The symbol of the WR iteration operator R for the Schrédinger equation with V(¢) =

constant is
R(z) = (21 +iBy) %B_,
and, trivially,
IRl < 215,

Using the Laplacian+potential splitting, or one of its cousins can be expected to yield a

good smoothing property with respect to high frequency forcings.

4. Discretization. In this section, we focus on (1) and apply a discrete transform as in
[12] to analyze the symmetric multistep methods commonly used for integrating oscillatory
problems.

Multistep methods construct an approximating sequence {u, } to {u(t,)} at successive time
points ¢, = nh. We use {u*} to refer to the numerical solution generated at the kth sweep of

waveform relaxation. Symmetric multistep methods for @ = f(¢,u) take the form:

k k
(5) i =0 Bif(lnei, tni),
=0 =0

with (ag, a1, ...,ar) and (Bo, B1,. .., Br) “palindromic” sequences, for which ag = ax, fo = 0k,

o1 = ag_1, B1 = Br_1, etc. These methods are used for integration of second order oscillatory
10



problems. An important feature of this class of methods is their time-reversibility. Note that
the multistep methods require k starting values.
In discretizing dissipative problems it is sensible to replace the space L? by [? with norm

Hun Y|k = (A Y |un|?)'/2. For our investigations, we use the weighted space with norm

{waHllna = (A le™ un| )12,

which can be viewed as a discretization of the L2 norm.

Following the usual practice we define operators a¢ and b on sequences by

k k
afun} = {Z Oty }, blun} = {Z Bitin—i }.
We also use the symbols a and b to refer to the corresponding characteristic polynomials:
k k

k—i k—i

a(¢) = ai(", b(¢) =D Bt
To preserve the intuitive correspondence of results from the continuous-time to discrete
worlds, define a discrete transform which takes {u,} to @(2) by @(z) = h3.5° e ™" u,, (essen-
tially a discretization of the Laplace transform, and equivalent to the discrete Laplace or (

transform).

Applying (5) to the linear problem (3) and computing the discrete transform, we find
ﬂH-l — S}L(Z)QALZ—I- ¢7
where
~1
1 a(e"?)
S =—|5—7F21-A A_
h(z) (h2 b(ehz) +) 3
and ¢ includes the effects due to the k starting values. We are going to assume that these starting
values are exact (for the unsplit discrete problem) so they do not effect the convergence of the

iteration.

For example, if & = 2m, we find

Si(z) = = (Pa(2) — Ap) 7 A,
11



where

Pu(2) 1 E;’;—Ol ajcosh(jhz) + ap,
Z)= — .
T R B, cosh(jhz) + B

In the general case, discrete versions of the Paley-Wiener theorem and Parseval’s identity

give (after modifying results in [12] to take into account the exponential weight):

Ph,a(Sk) = max p(Sk(2))

Rez>a

and
|Skllh,o = max |Sh(a + iy)|.
yeR
In order for the discretized operator to be bounded, we evidently need to require
a(e") + hEXb(e"*) £ 0, Rez > a,

for any A € 0(A4).

We now consider an example. Ignoring rounding error, the popular leapfrog method for
second order systems is equivalent to Stérmer’s rule (also known as the Verlet method), a
symmetric 2-step method with ag = as =1, a3 = =2 and Sy = B = 0, §; = 1. Applying this

scheme to the WR iteration for the linear problem and taking the discrete transform gives

Sn(z) = —(%(cosh(hz) - A )AL
The function
2
(6) Prr(z) = ﬁ(cosh(hz) -1

is an an O(h?z*) approximation to z%. The poles of the transformed discrete iteration operator

satisfy

_l h! 1+}L2_/\
z = 4 cosh 5 |

12



with A an eigenvalue of Ay . Explicit multistep scheme are always conditionally stable meaning
that the stability of the schemes will depend on the stepsize being restricted roughly in inverse
relation to the square root of the spectral radius of A;. For the Stérmer method, the stability
condition is that A < 0 and —Ah?)\ <= 2, which is also the condition that the poles of S}, remain
on the imaginary axis. The function Im cosh(£) is monotone in the real variable £ on [—1,1],
hence the ordering of the poles is preserved along the imaginary axis.

Another popular second order method is the (implicit) trapezoidal rule which has transform

(7) Pir(2) = ((2/h)( — D/ + 1)

4.1. Decay of the discrete symbol. Theory due to Miekkala and Nevanlinna [12] com-
pares the convergence of the discrete iteration in /3 to that of the continuous time iteration
for dissipative problems and for methods that are not weakly stable. We need to modify this
mechanism to cover convergence for stable methods for second order differential equations in
the weighted spaces rather than L? and [3. In what follows, it is assumed that the & starting
values are held fixed as we iterate. These could also be obtained by some convergent process,
but this does not seem a meaningful generalization.

In the case of the discretized iteration we need to examine the images of segments a + iy,
—00 < y < oo under P,. The situation for a = 1 is representative and in Figure 1 we see
the images of this line for the trapezoidal and Stormer discretizations, for various values of the
stepsize.

Putting real « into each of the functions P{™, P§* and z? one can show that for sufficiently

small ha
Pi*(a) < a? < PE"(a), a >0,

which means, somewhat surprisingly, that in the neighborhood of y = 0, the Stérmer dis-
cretization actually leads to a slightly more stable overall iteration than that generated by the

trapezoidal rule.

13
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FiG. 1. Approzimation of 2° by Stérmer (dashed lines) and trapezoidal rule (dotted lines)

The situation for large h is more dramatic. For nonstiff problems with eigenvalues A very
near the origin in the complex plane, large steps should be possible and one might suppose
that the Stérmer and trapezoidal rule discretizations would behave similarly with respect to
WR convergence. In fact, this is not the case and it turns out that the Stérmer method yields
a much more stable WR iteration than the trapezoidal rule over comparable time intervals.
Figure 2 shows the image of 1 +14y, —2 < y < 2, when h = 2, under P{™, P$™ and 2%. Figure 2
also indicates that results such as Proposition 9 of [10] and Theorem 3.4 of [12] which bound the
spectral radius of the discrete iteration in terms of that of the continuous iteration for A-stable
multistep methods will not typically hold in our setting.

The problem with generalizing the results of [12] is that they were based on the strengthened
stability assumption that the stability region includes a disk on the negative real axis touching
the origin, whereas many of the symmetric methods we consider (e.g. Stérmer’s rule) do not
satisfy this condition.

We will use the exponential weight to correct for the weak stability of the method. For
v > 0, define the v-stability region ., of the method as the set of all u € C such that the roots
¢ of a(¢) + p?b(¢) = 0 lie in the disk |¢| < €7 and are simple on the boundary. The iteration
operator Sy is bounded in lf?w if VX e %intﬂah, for all A € o(Ay).

14



s.r.h=2 -\ o

FiGg. 2. Large time-step comparison of tmages of 1 + 1y

Now observe that

Su(z) = (Pu(2)I— AL)' AL

S(\/Pa(2))-
We can directly relate the spectral radius of the discrete iteration to that of the continuous
time iteration. In fact,

Pai(Sh) = sup p<5< Ph(Z)))

Rez>o
_ 1 [a(er*)
- e (s (i)

Let the notation bdyW be used to indicate the boundary of the set W. Since {

a ehz)

(
b(ehz)

|Rez =
a} = bdyQ,, we have, analogous to a result in [12].

THEOREM 4.1. Suppose o(hAy) C intQun, then
Pan(Sh) = sup{p(S(2))|hz € C \ intQqun},
and

[Shllan = sup{[S(2)[[hz € Ian}-
15



THEOREM 4.2. If the dynamic iteration converges in L? and the symmetric mullistep
method is irreducible and convergent then the discretized ileralion converges in 2, for suffi-

ciently small h and
pa(Sh) = palS) + O(h).

We will outline a proof of this result since the reasoning is somewhat different than that
used in [12].

Let B1,82...,8k—1 be the k zeros of a, with $; = 1 being the principle root counted with
multiplicity two. For simplicity, assume that these zeros all lie on the unit circle $* and that
they are ordered counterclockwise about the unit circle, thus 3; = et 6; €10,27],0; < 0;44.
(It would not be difficult to treat the case where some zeros lie inside the unit circle.) From
consistency, we must have that 5; = 1 is a double root, while all of the other roots are simple.

We can view |a(e"*w)|? as a function of w on S'. For @ = 0, it has k — 1 minima at the

zeros of a; for h sufliciently small and a > 0, it has k£ — 1 local minima located near the points

Bi. We can expand « in Taylor’s series about the 3; to obtain

a(e"w) = a(B) + ' (Bi) (" w — Bi) + O((e"*w — §;)?)

= d(B;)("w — B;) + O(e"*w — B;)%.

Only #1 = 1 is a multiple root of a, hence a'(8;) # 0 for i = 2,...,k — 1. This means that, for
e"w in the vicinity of 3;,i = 2,...,k — 1, we must have a(e"*w) = O(h); such a relation must
also hold at the local minimum.

Using this, we can prove a small lemma which shows that the spectral radius is determined
for small h by the approximation property of the principle root.

LeMMA 4.3. For h sufficiently small,

max p(S(a + iy)) = Ogryns%g/hp(sh(a +1iy)),

16



and a similar result holds for ||Sy]|.

Proof: By symmetry, 8;_1 = 27 — 03. Denote I}, = [62/h,0;_1/h]. For h sufficiently small,
the global minimum of |a(e"*€*¥)|? on I, must occur at one of its local minima over that
interval or at the endpoints. Since b(e*) can be uniformly bounded in any bounded region, it

is straightforward to see that the quantity ux(y) defined by

1
Mh(y) T ﬁ b(eh(a_}_iy))

satisfies

and hence that

max p(Sp(a + iy)) = O(h).

Due to symmetry, the behavior of p is the same on the intervals [f;_1/h,27/h] and [0, 83/h]; in
other words, we need only look in the latter subinterval for the maximizing value. O.

Given y > 0, consistency implies that

gnax |(e+iy) — pr(y)| = O(h).

Choose a large enough rectangular neighborhood N of the origin so that e.g. p(.S(2)) < pa(S)/2
for z outside N. Now |ux(02/h)| ~ h=1/2, thus for k sufficiently small, the curve I'y, := {u(y) :
0 <y < 0y/h} leaves N. After leaving N, it cannot reenter N (or |u(y)?| would have another
local minimum). Within N, the curve I', will approximate the line segment a + iy to O(h).
Thus for b sufficiently small, the maximum value of p(Sx(z)) will occur when gy (y) lies within
N, and since this point lies within O(h) of a 4 iy we can see that asymptotically, the spectral
radius of Sy, in the weighted space can differ by only O(h) from that of S. This concludes the

proof of the theorem.
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5. Aliasing effects.. Consider the transformed discrete iterator 55(z) = —(Py(2)—A4) 1A
on the vertical line a +iv, v € R. The degree to which an eigenvalue —w? of A, has an impact
on the solution at frequency v depends inversely on the separation between P,(a 4 i) and
—w?. Those frequencies v for which Pj(a + iv) lies far from the spectrum of A, will be only
weakly propagated by the iteration.

For any multistep method, the function Py(a + iv) is actually periodic in v with period
27 /h. This aliasing effect means that high frequencies can be excited with large stepsizes.
Frequencies vy + 2k7 /h all give the same response. Actually, the situation is even somewhat
worse due to the symmetry about the real axis: the response to —vy + 27/h will be the same as
the response to vy. Of course, if there are no frequencies present in the forcing function above
say 7/h then these anomalous excitations do no harm.

We will illustrate with the wave equation example. We first look at the response of the
discrete solution operator for the (unsplit) N = 32 spatially discretized wave equation along
the line 1 + ¢y. The curves shown in Figure 3 show the spectral radii (hence also the norm) of
L(1+ iy)~! versus y for h = 1,.5,.25. The maximum value is achieved near y = 0, as expected
from Theorems 3.1 and 4.2. An increase in the stepsize h provides accuracy for small y while

introducing some extraneous excitation at 27k/h, k € Z.

1.2 solid h=1

FiG. 3. Spectral radius of L{1+iy), wave equation, N=32.
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We next examine the spectral radius of the transformed discrete iteration operator S(z)
for the the Jacobi splitting of the (N = 32) spatially discretized wave equation along the line
1+ ¢y. The curves shown in Figure 4 show the spectral radii versus y for h in the progression
h = 1,.5,.25,.125. As h decreases, the spectral radius has increasing maxima achieved at

increasing values of y.

solid h=1
/ﬁ\
2.5r h=5 1Y
1 \
— 1
h=.25 ,
!
2 h=.125 /
/
/
/
= /
S15F /
£
1 = ‘?‘:/7::::/ S
0.5r
0 . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20

F1G. 4. Spectral radius of S(1+iy), wave equation, N=32.

Using a large stepsize to resolve the small y response will not apparently improve the
convergence of the small step Jacobi iteration, since the large stepsize solution operator does
not even act on the high frequencies (where the spectral radius is large). The exception to this
will be in the case that h is so small that the “coarse” grid is not coarse at all (in which case,
little is gained through iteration). Moreover, unless p(S4(2)) is small outside of an interval
about the origin of length roughly 27/H, the artifacts introduced at the high frequencies on
the coarse grid will not be damped out.

To see a substantial improvement, our iteration operator should be designed to achieve its
maximum at or near y = 0. As mentioned previously, for the wave equation, a natural (if slow)
choice is standard Picard iteration.

If we turn to the Schrédinger equation and consider for example the splitting (4) for V(¢) =

constant. In case V is not too large, we would expect here that the maximum of p(R(z)) is
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achieved near y = 0 (A4 has an eigenvalue near the origin) and that substantial improvement

may be possible by exploiting a coarse time step solution.

6. Timestep Acceleration of WR. The examples of the previous section suggest that
an approach in which different time meshes are used at each sweep could be successful. The
goal, as for standard multigrid is to iterate on successively coarser grids, thus resolving those
components of the residual that are most difficult to obtain on the fine grid. We envision
ultimately combining spatial multigrid with this timestep acceleration scheme. For the formu-
lation and analysis of standard multigrid methods in the context of elliptic PDEs, the reader
is referred to [2].

We will now define the steps of the algorithm described in the introduction. Let b and a
represent the operators which define the discretization. We use h to represent the fine timestep,
and H to represent the coarse timestep. Normally, in solving elliptic PDEs, we use H = 2h. In
our case, this choice may or may not be appropriate; for the purposes of discussing an algorithm,
we assume that the stepsize changes by a common factor at each iteration, but this is perhaps
not essential in practice. Let IE and I;} represent restriction and prolongation operators,
respectively, which act between the fine and coarse time-meshes, thus I,fl : lfw — 112'—1,04 and
I;_“I : 112'—1@ — li,a'
Note that whether we wish to solve problems with or without forcing, description for a

forced problem permits an easy recursive definition.

Algorithm TAWR(h). Given: fine timestep h, a sequence {f,} € [? ., an approzimation
u® to the solution with fized stepsize h, and a splitling A = Ay — A_, the following algorithm

solves

(al = Wb A){u,} = {2}

subject to k prescribed starting values 6;, t = 0,...,k — 1.
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1. Small-timestep Pre-Smoothing. Starting from u", perform v sweeps of WR iteration

with timestep h:
(8) (af — RP0A ) {ult'y = —R2A_{ul} + {f.}, 1=0,1,...,v—1

where ui-"'l =6;,1=0,....k—1.
2. Large-timestep Correction. Compute the defect {d,} satisfying d, =0, n =0,...,k—1

and
d, = (al — h*bA)u” — [, n >k,
from the formula
dyp = h*bA_(u” —uZ™h).
If the timestep H = gh is sufliciently large, solve
(9) (al — H*bA){va} = I {d,},

directly (i.e. without relaxation) using zeros for starting values.
Else apply p iterations of TAWR(H) to (9), using zeros for starting values.

Next, correct:

{n} = {uy} — Ig{ea).

3. Small-timestep Post-Smoothing Apply v iterations of the fine mesh smoothing opera-

tion (8).

Notes:
o For g = 1 this is the V-cycle, for p > 2, it is called the W-cycle.
¢ Different numbers of smoothing steps could be used in the pre- and post-smoothings.

e To solve the problem Lu = f using timestep acceleration, we first compute {f,} :=

R2b{ f(tn)}-
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7. Convergence Analysis. In this section we present an elementary general conver-
gence result regarding two-grid acceleration. This result could be easily extended to the full
timestep acceleration iteration. The iteration operator in the two stepsize case can be writ-
ten as $7Cp Sy where Sj, represents the smoothing sweep and Cp, g represents the coarse-grid
correction. In general it is enough to understand M = Cp gS;. The operator Cy g can be

written
Chg = I —plal — H*bA) r(al — h*bA),

where we have denoted the prolongation and restriction operators by p and r, respectively. On

the other hand,
S = (al — h*bAL)h*bA_.
It is enough to show that
My = Cpp(al — R*bA)™!
is O(h™%)in 2 ;, while the norm of
My = (al — R*bA)S}
is O(h*¢(v)), where ¢ tends to zero as v — 0. In fact we anticipate that the situation is often

rather better than this result would indicate, but this approach allows us to state a quite general

convergence result.

Set R := (al — h*bA). Note
Chu(al — thA)_l = 7?,,:1 - pR;II'r.

Based on the relation Rgthb = ,Cgl, the fact that b is a bounded operator, and the
theorems of the last section, we have:

LEMMA 7.1. Suppose consistent, stable linear multistep is used and the restriction and pro-
longation operators are bounded operators. Then ||[Mi||a,n < Ch™2||[R7Y||o for all b sufficiently

small.
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The proof follows since (i) [|£; lap = [|£7 o + O(h), (i) the same thing holds for &
replaced by H and H = g¢h, and (iii) the restriction and prolongation operators are bounded.

.

For the smoothing, we have

h_Qb_lMQ

=207 (al — h*bA)(al — h*bA, )T A%DA_S/71

= A% Yal — R?b(A4 — A-))(al — h?bAL)"'h%bA_S) ™
= A_(I—-(al —h*bAL)'R*A_)SI!

= A_(I-8,)S.

We therefore have

[ Mzllan < B2[[Bllon

A|(1+ [IShllan)

Sh

v
a,h:

This converges to zero provided

Pan(S) <7 < 1.

Thus we can state:

THEOREM 7.2. If the undiscretized smoothing iteration is convergent (po(S) < 1), a consis-
tent, stable linear multistep is used, the restriction and prolongation are bounded operators be-
tween l}zchy and 112;11cy and enough smoothing iterations are performed, then the timestep-accelerated
waveform relazation algorithm converges.

Because of the strong contractivity of the Picard operator on small time intervals, it would
be straightforward to extend this result to the full multiple mesh recursive acceleration scheme.
On the other hand, besides proving asymptotic convergence, this simplified approach provides

no practical estimates of convergence.

7.1. Treatment of Model Problems. A key observation is that two modes are coupled
via restriction. It is possible to write a formula for the “symbol” of the iteration operator as a
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2 x 2 matrix operating on the pair of coupled modes €""** and ehm(z+im) - Ag an example, taking
the operators
_71 1 1
r=1[1i 2 7]
(full weighting restriction) and p = 2r* (piecewise linear interpolation), and assuming any

symmetric multistep method (a,b), then we find the action of M on the pair of modes is given

by
M(z) = C(2)5(2),

where

Ci(z) :IQN—l (1 + cosh(hz))? 1 — cosh?(hz) ]@( 1 a(eHZ)I_A) -1 (ia(ehz)]_A)7

4 1- coshQ(hz) (1- cosh(hz))2 H2 b(eHz)

and

a(eh -
S(z)=1L© (%%I - A+) A_.

(® is the Kronecker product).

Now for Jacobi or Picard iteration on the wave equation, for example, the matrix M is
easily reduced to a diagonal matrix of 2 x 2 blocks, so the asymptotic convergence behavior
can be determined relatively easily. For red-black Gauss-Seidel iteration on the square, we get
a further pairing of the spatial modes, so M actually is reduced to 4 x 4 blocks. By studying
the spectra of these blocks, various ODE discretizations could be compared for their effect on
asymptotic rate of convergence, as could other choices of restriction/prolongation.

Note that besides the restriction and prolongation having an adjoint relationship (r = ¢p*),

if we choose the second order, two-step discretization

h2
(10) Up—1 — 2un + Up41 = E(fn—l + 4fn + fn—l—l)

then we find that also rRpp = Rpg. This appears to be the only consistent, stable two-step

scheme for which this property holds with the given r and p. These resemble the conditions
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for “variational form”, however the operator R and its discretization are not self-adjoint in our

setting, so we do not have the space decomposition
(11) lia = N(rRp) © R(p)
and the standard theoretical results cannot be directly applied.

8. Numerical Experiments. We performed experiments using the two-grid iteration
on linear wave equations. We found that the performance improvements were sensitive to
many factors, including timestep, time window length, and splitting. Unfortunately, we cannot
expect to have complete flexibility in the choice of the time interval or “window” as this may
be determined from a storage or communication limitation. Similarly, the timestep is typically
chosen for accuracy reasons.

Consider the standard 1D wave equation (1), N=16, using Jacobi iteration for the smooth-
ing. We used the discretization (10) together with full weighting restriction and piecewise linear
interpolation. We did not anticipate very good behavior since the smoothing property is rela-
tively weak for this splitting (fast modes are not very strongly damped). Indeed, this is what
we observed. For most values of the stepsize, the 2-grid acceleration improved convergence,
but not by very much. (In some cases performance was even slightly degraded.) In each of
the Figures the 2-norm of the error is graphed as a function of the sweep number s and the
timestep n. In Figure 5 the error in Jacobi WR is indicated for stepsize h = .025. Figure 6
shows the mild improvement in the error when a coarse grid correction is applied at each Jacobi
WR sweep.

We next examined a modified wave equation of the form
i =(A+ pl)u,

where A is the discrete Laplacian and g is a scalar parameter. We used “Laplacian splitting”
into A and pl. It is easy to see that this splitting possesses a strong “smoothing property”. We

first chose g = 50, which, with 16 meshpoints, means that we had a substantial perturbation of
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Fig. 5. Errors in Jacobt WR, h=.025, 40 steps without correction.
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FiG. 6. Errors with coarse grid correction, h=.025, 40 steps, showing poor acceleration. The benefit of coarse

grid correction is diminished by the poor smoothing property of the Jacobi smoother.

the discrete Laplacian. Initial data excited the first two eigenfunctions of the Laplacian (slow
modes), although this choice was not critical to the results we obtained. Twenty timesteps of
size h = .1 were used. In this case, the coarse grid corrections offer substantial improvement, as
shown in Figure 7. The left figure shows the log,, error versus timestep and sweep number; on
the right we have shown the log,, ratio of the errors with and without the two-grid acceleration.

The improvement evidenced here is as much as a factor of 10° in 20 sweeps, or a little under
a factor of 2 per sweep on average.

The improvement is evident until the error reaches the level of roundoff. At the weaker
perturbation p = 10, the effect somewhat diminished (Figure 8). If we instead increased the

strength of the applied field (= 100), the coarse grid correction continued to offer substantial
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acceleration; this is indicated in Figure 9. At larger or smaller timesteps, the improvement

slightly diminished. A linear acceleration effect was observed on longer time intervals (Figure

10)..

log error
log error ratio
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FiGg. 7. (a) log error and (b) log error ratio, p = 50, h = .1, 20 steps . The splitting provides a strong

smoothing property, and a substantial improvement is possible with the two-grid iteration.
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Fi1G. 8. (a) log error and (b) log error ratio, p = 10, h = .1, 20 steps

Although these experiments suggest that time-mesh coarsening accelerations hold promise
for improving the parallel waveform relaxation algorithm, they certainly do not settle all the

issues. In particular, we do not have an easy and robust mechanism for determining what
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F1G. 9. (a) log error and (b) log error ratio, p = 100, h = .1, 20 steps
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Fi1Gg. 10. (a) log error and (b) log error ratio, p = 50, b = .1, 50 steps . On longer time intervals, the

convergence acceleration factor (ratio of errors with and without acceleration) becomes approzimately linear in

the sweep.

splittings will benefit from acceleration, or for determining various parameters such as number

of smoothing sweeps, optimal coarsening, etc. We also have not yet experimented with the use

of more than two levels of time-mesh acceleration.
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