Partial Thermostatting of Coarse-Grained Molecular Dynamics
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Thermalization issues are studied for a multiscale molecular model based on successive coarse-
graining. It is found that high frequency thermal energy can be trapped for long periods in regions
with the smallest length scale. As these are precisely the regions where accurate dynamical modelling
is generally required, a hybrid strategy is proposed to avoid introduction of artificial thermostatting
effects, based on the combination of two novel computational algorithms: Partial Thermostatting
Molecular Dynamics (PTMD) is used to thermostat the coarse-grained region while preserving the
dynamics of the atomistic region, and Recursive Multiple Thermostats (RMT) provides an effective
multiscale dynamic-stochastic heat bath. The combined method is applied to a 1D quasicontinuum
model, in which a molecular dynamics simulation is embedded within a dynamic finite element

model.

PACS numbers: 02.70.Ns, 02.70.Dh, 45.20.Jj, 65.40.De

The boundary conditions for molecular dynamics
(MD) simulations in the condensed phase are a compro-
mise between correct representation of the far field and
minimization of the system size due to computational
constraints. In recent years, concurrent multiscale meth-
ods have been developed for crystalline solids in which
the complex response of the far field is represented by a
coarse-grained continuum region constructed from finite
elements (see [1, 2] for reviews). The requirements of
the coarse-grained far field depend on the nature of the
simulation, generally either sampling or dynamics. If the
purpose of simulation is sampling of equilibrium quanti-
ties, then typically only slowly-changing thermodynam-
ical or statistical quantities are of interest and inertial
effects are small. Rapid changes occur in truly dynamic
situations such as dynamic fracture.

Dynamical simulations are complicated by the reflec-
tion of high frequency phonons from the interface be-
tween the atomistic and coarse-grained (CG) regions.
This leads to energy trapping and localized heating [2].
In most cases, the CG region is only required to provide a
(slowly-evolving) statistically accurate (elastostatic) far
field representation. Correct transmission of phonons
across the interface [1-3] is only necessary if the far
boundaries can be seen during the simulation period (e.g.
MEMS) or there are two atomistic regions which need
to interact dynamically via the CG medium (e.g. two
cracks). We assume here that absorption of phonons at
the interface is a sufficient requirement.

The ensemble is consequently canonical (constant tem-
perature) as opposed to microcanonical (constant en-
ergy). Conventional thermostatting algorithms control
the temperature via velocity rescaling. This corrupts the
true dynamics of the regions in which it is applied. Liu
[4] has recently demonstrated that MD simulations of
nanoindentation are very sensitive to global thermostatic
control.

This paper aims to address the problem of phonon
reflection while preserving the correct dynamics in the
atomistic region. We proceed in four stages. First, a
finite temperature CG representation of the body is de-
veloped and compared with atomistic results. Choice of
an appropriate interface between the CG and atomistic
regions is then explored. The performance of different lo-
cal thermostatting algorithms is assessed in the context
of correct sampling, and, finally, the more demanding
requirements of dynamical simulation are considered.

For the purposes of demonstration, we restrict the
analysis to a one-dimensional chain of N atoms. Each
atom has mass m and is assigned an index a = 1,..., N.
Atom a has position ¢, and momentum p,. The atoms in-
teract via the interatomic potential ¢(r) which is a func-
tion of the atomic separation r. The dynamics of the
above system are described by the following Hamiltonian
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where P = {p,}, Q@ = {¢.}, M = mlI, and I is the
identity matrix. The potential energy is assumed to have
the form:
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The coarse-graining procedure should reduce the num-
ber of degrees of freedom of the fully atomistic model
defined in (1) while preserving the dynamical and sam-
pling properties of part or all of the system. Following
the philosophy of the zero-temperature quasicontinuum
method [5], a reduced set of n(< N) atoms are chosen to
represent the system. These representative (rep.) atoms
form the ends of sub-chains of atoms. The behavior of
the slave atoms within each sub-chain (or element) are
inferred from the behavior of the rep. atoms at each end.
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FIG. 1: Coarse-grained geometry of a 1D chain with 10 rep-
resentative atoms (o) and 8 slave atoms (o).

The rep. atoms are given the indices ¢ = 1,...,n and
each element ¢ is bounded by rep. atoms ¢ and 7 + 1.
Element i represents n; atoms, two rep. atoms shared
between two elements and n; — 1 slave atoms. An exam-
ple of the coarse-graining process is illustrated in Figure
1 for N=18 and n=10. This configuration is described
by the set {3',22,13 22 3'}.

The state of the system is thus characterized by the
positions, g, and momenta, p, of the rep. atoms. To
retain correct sampling of quantities in terms of positions
and momenta of rep. atoms [6] the partition function
must remain constant

7= / / exp (~AH(Q, P))dQIP  (3)
= hiN/ / exp (—fHca(q,p)) dgdp,

where h is Planck’s constant, § = 1/kgT, kg is Boltz-
mann’s constant and T is absolute temperature. The
resulting coarse-grained Hamiltonian is
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where the mass matrix m = mlI contains only the masses
of the rep. atoms (not the slave atoms). As dynamics
is only modelled in the atomistic region, the masses of
rep. atoms in the CG part are in fact arbitrary. For
consistency with other approaches [6], we have utilized a
lump mass model (in which the mass of the slave atoms
is attributed equally to the element end nodes) for all
simulations.

The CG potential Vea(g,T) can only be calculated
analytically for a harmonic interatomic potential. As-
suming only nearest-neighbor interactions with ¢(r) =
2k(r —ro)? gives

k‘
Z — ql-‘rl —qi — nzTO)

w(l) o

where the frequency w; = nQ(" Y'\/£. The first term

on the RHS of (5) is the potential energy of the deformed
lattice. The second term represents the vibrational en-
ergy of the slave atoms and is constant for a harmonic
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FIG. 2: Average thermal expansion force in a fully atomistic
chain with predictions from the coarse-grained potential (6).

potential. Anharmonic effects such as thermal expansion
only arise for nonlinear potentials. We make the approx-
imation that (5) can be extended for a general potential
such that the variant contribution is
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where r; = (gi+1 —¢q;) /n; is the mean interatomic spacing
in element ¢. This is similar to the result of LeSar et al.
[7] for high temperatures. Equation (6) reduces to the
atomistic potential for no coarse-graining (all n; = 1) as
expected. Note that rep. atoms only truly represent the
time-averaged response of an atom (or group of atoms);
their oscillation period and amplitude are not those of a
normal atom.

For illustration, the Lennard-Jones potential ¢(r) =

4e (( )12 (%)6) is used. Only nearest-neighbor in-

teractions are considered. In the simulations presented
here, we took typical values of e=0.6eV, o0 = 2.54 and
m = 10~ %kg. However, these results are general and the
exact choice of parameters is not critical. The simula-
tions are initialized by assigning rep. atoms momenta
from an appropriately weighted Gaussian distribution
with zero net momentum. The ends of the chain are
fixed so that the average lattice spacing is always the
zero Kelvin lattice spacing, ro = v/20.

For constrained thermal expansion, the average
force acting between each atom is predicted to be
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element. This is compared with a fully atomistic chain
of 160 atoms, {1%°}, in Figure 2. The results are in good
agreement for lower temperatures with only a slight de-
viation at higher temperatures.

For the remainder of this paper, we investigate a par-
tially coarse-grained chain of 1250 atoms of the form
{CGY,IF,AR,IF,CG9}. Full atomic resolution is retained
in the central atomistic region (AR) which contains
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) for a large, single (n = 2)



200 atoms, denoted {12°°}. The two outermost regions
(CGY) are heavily coarse-grained with 8 slave atoms per
element. Each represents 432 atoms and are denoted
{9*8}. The two interface (IF) regions each represent 93
atoms and are chosen to increase performance. With-
out thermostatting it is found that any coarse-graining
of the chain drastically slows its convergence to thermal
equilibrium, with the effect becoming more pronounced
with increasing levels of coarse-graining. This is amelio-
rated (although not removed) by gradual transition to
full coarse-graining via the IF region. An IF region of
{75,5%,3%,118} was found to be appropriate. Overlap-
ping the fully atomistic region into the IF, {18}, facil-
litates thermalization of the AR. The final chain config-
uration, {918,75 55 35 118 1200 118 35 55 75 98} con-
tains 362 rep. atoms.

A common approach to temperature control is to apply
a thermostat to the whole system. This can be done using
the well-known Nosé Hamiltonian [8]
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where s and 7 are conjugate position and momentum
thermostatting variables, p is a fictional thermal mass
which determines the strength of the thermal coupling
to the system, and g is the number of degrees of freedom
(including s). The virtual momenta p is related to the
actual momenta by p = sp. In practice the timescale
must be re-parameterized for numerical computation. A
symplectic scheme with re-parameterization of time can
be realized by the Nosé-Poincaré (NP) Hamiltonian [9]
Hryp = s(Hnose — Ho) where Hg is the initial value of
the Nosé Hamiltonian. (The use of symplectic NP-based
schemes has stability advantages [9-11] compared to the
more common Nosé-Hoover method.)
Thermostatting the entire system is undesirable from
a modelling perspective as velocity rescaling can poten-
tially corrupt the dynamics of the AR region. The Partial
Thermostatting Molecular Dynamics (PTMD) technique
proposed by Jia and Leimkuhler[12] avoids this problem.
The set of rep. atoms is divided into two sets, with po-
sitions ¢ = {qa, gb}, associated momenta p = {Pa, Db}
and masses m = {mgq, mp} where a and b denote ther-
mostatted and unthermostatted degrees of freedom re-
spectively. Applying a Nosé thermostat to set a gives
the partial thermostatting Hamiltonian
yPT pim;'pa  BLMy Do ()
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A time transformation is applied to regularize the time
variable for the thermostatted (a) variables [12]. The
resulting system can be viewed as coupling Newtonian
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FIG. 3: Running average of temperature in the AR for no
thermostatting (CGMD), thermostatting with NP applied to
IF and CG9, and thermostatting with RMT applied to IF and
CGY. Only RMT absorbs the high frequency phonons at the
IF and hence correctly regulate the temperature in the AR.

dynamics for the b variables with a Nosé-Poincaré style
thermal reservoir. The PTMD model preserves volume
and recovers the canonical distribution [12]. This allows
the temperature of any part of the chain to be directly
regulated, forming an effective heat bath for the remain-
der of the system. In this paper the IF and CG9 regions
are thermostatted with a target temperature of 300K.
The temperature in a chain initiated far from thermal
equilibrium, with the AR at 600K and the rest (IF and
CG@G9) at 300K, is found to be well-controlled by a single
NP thermostat. The NP thermostat provides a reason-
able heat bath for the AR and the average temperature
in each region approaches the target temperature within
a practical time scale.

Thermostatting a more demanding dynamic applica-
tion is next considered. The chain is initially equilibrated
at 300K and then kinetic energy is injected into the AR
from time t=0 to t=20 by forcing the central atom in the
AR to oscillate with an amplitude of 0.03ry and at 1.2
times the atomic harmonic oscillation frequency. This
generates a succession of high frequency travelling waves
which rapidly raise the temperature in the AR as shown
in Figure 3. The energy packet reaches the IF at t=25
and should have left the AR by t=45. Almost 50% of this
energy is trapped in the AR if the simulation is unther-
mostatted (CGMD). Application of NP to IF and CG9
does not provide a good solution to this problem because
a single thermostat cannot respond rapidly to regions
operating at different time scales resulting in phonon re-
flection at the AR/IF interface.

However, any thermostatting technique can be used
within the PTMD algorithm. The multiscale thermostat-
ting problem is resolved within a Hamiltonian framework
by using the Recursive Multiple Thermostat (RMT) al-
gorithm proposed in [13]. This uses a hierarchy of r ther-
mostatting variables, s; to s,, in which s; thermostats
so and the original system, and so on in succession. This
breaks up the structure of the resulting thermostat and
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FIG. 4: Cumulative average of temperature in AR, IF and
CG9 shows long time response of Fig. 3 for (a) NP applied
to IF and CG9 and (b) RMT applied to IF and CG9. RMT
provides correct sampling whereas NP does not.

is expected to generate an effective multiscale stochastic
heat bath. The following generalized RMT NP Hamilto-
nian is proposed HRMT = sy -+ 5, (HEMT — H,) where
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The sets a and a represent quantities in the IF and CG9
regions respectively, g and g are the numbers of degrees of
freedom in those sets and g = g+ g. Importantly, the nu-
merical scheme can be easily and efficiently implemented
by Hamiltonian splitting [13]. In our simulations we used
r=3, u1 =m, pus = 1.2m, puz = 1.5m, Cy, = 4.16675 and
Cs = 0.0033338.

Application of RMT to the IF and CG9 regions for
the dynamic problem is shown in Figure 3. It is clearly
a great improvement on the NP thermostat. The tem-
perature in the AR is (indirectly) controlled very well
by RMT, with practically no phonon reflection. The ad-
vantages of RMT are two fold. First, the multiple ther-
mostats can respond to the inherently different frequen-

cies in the different regions. Second, like all Nosé dynam-
ics methods, RMT introduces a feedback control involv-
ing average kinetic energy; this control becomes neces-
sarily less sensitive with increasing system size. Modified
RMT can respond simultaneously to rapid changes in
the small IF and slower changes in the larger CG9 re-
gion. The thermostat consequently responds rapidly to
the energy entering the IF, absorbing all the high fre-
quency phonons, and effectively thermostatting the low
frequency CG9 region. The long time sampling response
of the NP and RMT methods for this problem is shown in
Fig. 4. RMT equilibrates the chain well with all regions
approaching the target temperature within a practical
time scale. NP does not achieve this.

In conclusion, PTMD has been used to provide a
coarse-grained heat bath for an atomistic simulation. A
single Nosé thermostat can adequately thermalize a mul-
tiscale chain for slowly changing problems but not dy-
namic ones. RMT provides a hierarchy of successive ther-
mostatting variables to generate a multiscale stochastic
heat bath. Application of RMT to an appropriate coarse-
grained region has been shown to effectively thermostat
highly dynamic simulations without energy trapping.
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