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Summary. The evaluation of molecular dynamics models incorporating temperature control

methods is of great importance for molecular dynamics practitioners. In this paper, we study the

way in which biomolecular systems achieve thermal equilibrium. In unthermostatted (constant

energy) and Nosé-Hoover dynamics simulations, correct partition of energy is not observed on

a typical MD simulation timescale. We discuss the practical use of numerical schemes based on

Nosé-Hoover chains, Nosé-Poincaré and recursive multiple thermostats (RMT) [8], with particu-

lar reference to parameter selection, and show that RMT appears to show the most promise as a

method for correct thermostatting. All of the MD simulations were carried out using a variation
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of the CHARMM package in which the Nosé-Poincaré, Nosé-Hoover Chains and RMT methods

have been implemented.

1 Introduction

Molecular dynamics (MD) is an increasingly popular tool in chemistry, physics, engi-

neering and biology. In many molecular simulations, the dynamics trajectory is used as

a method of sampling a desired ensemble, for example to compute the average of some

function of the phase space variables. In such cases it is important that the trajectory pro-

duce a representative collection of phase points for all variables of the model. A common

ensemble used in biomolecular simulation is the NVT ensemble, which weights points of

phase space according to the Gibbs density

ρ ∝ e−βH , β = (kBT )−1,

where H is the system Hamiltonian, kB is Boltzmann’s constant, and T is temperature.

In normal practice, MD samples from the isoenergetic (microcanonical) ensemble, so

some device must be employed to generate points from the NVT ensemble. The meth-

ods discussed in this article are based on construction of extended Hamiltonians whose

microcanonical dynamics generate canonical sampling sequences (Nosé dynamics). Nosé

[5] proposed a Hamiltonian of the form:

HNose = H
(

q,
p

s

)

+
p2

s

2Q
+ gkT ln s,

where Q is the Nosé mass, s is the thermostatting variable and ps is its conjugate momen-

tum. The system is often simulated in a time-reversible but non-Hamiltonian formulation
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(Nosé-Hoover, [7]) that incorporates a correction of timescale (this time-transformation

has some important implications for the stability of numerical methods). In a 1998 paper

[4], a Hamiltonian time-regularized formulation was introduced along with reversible and

symplectic integrators (see also [16, 15]). These methods show enhanced long term stabil-

ity compared to Nosé-Hoover schemes. The Nosé-Poincaré schemes, as they are termed

because of the use of a Poincaré time transformation, have been extended to NPT and

other ensembles in several recent works [9, 11, 10].
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Fig. 1. A 5ns trajectory for alanine dipeptide using the Verlet integrator clearly shows that

equilibrium is not achieved on the indicated timescale. The plot shows the cumulative time-

averaged temperatures for the entire system (all), and for each type of atom separately.

In classical models of biomolecules, when thermostatting with schemes derived from

Nosé’s method, trapping of energy in subsystems can result in long equilibration times.

The presence of many strongly coupled harmonic components of not too different fre-
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Fig. 2. Cumulative average temperature, and temperature of subsystems computed by a 5ns

trajectory for alanine dipeptide using the Nosé-Hoover option in CHARMM with Q=0.3 — as

we report later, this is the optimal value for Q. Correct thermalization is clearly not achieved

on this time scale.

quency means that the systems should eventually equilibrate, but the equilibration time

in all-atom models (including bond vibrations) nonetheless greatly exceeds the time in-

terval on which simulation is performed (a few nanoseconds, in typical practice). The

only way to be sure that an initial sample is properly equilibrated is to check that in

subsequent runs, the individual momentum distributions associated to each degree of

freedom are Maxwellian. This is typically not done in practice. To bring a given molecu-

lar system rapidly to equilibrium and maintain the system in that state to ensure good

sampling of all degrees of freedom, it is necessary to employ a suitable thermostatting

mechanism.
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To illustrate the primary challenge that we will attempt to address in this paper,

we have performed a molecular dynamics simulation of an unsolvated alanine dipeptide

molecule using a representative molecular dynamics software package (CHARMM [1]).

We used the Verlet method to perform a microcanonical simulation on the system and

examined the convergence to thermal equilibrium in the “light” (H) and “heavy” (C,N,O)

atoms. Note that because of the presence of conserved quantities (total linear momenta)

the usual equipartition of energy does not hold; the modified formulas are given in Section

2. The details regarding the setup of this simulation can be found in Section 3.4. It is

clear from these experiments that the adiabatic localization of energy is a significant

cause for concern as seen in Figures 1 and 2.

It might be thought that the energy trapping is a result of performing these sim-

ulations in vacuo, but this is not the case: similar problems have been verified by the

authors for solvated models.3 It might also be thought that the Nosé dynamics technique,

in introducing a “global demon” which couples all degrees of freedom, would successfully

resolve this issue. In fact, as seen in Figure 2, this is not the case: although such meth-

ods successfully control the overall temperature of the system, the thermal distributions

observed in light and heavy degrees of freedom using Nosé-Hoover (and Nosé-Poincaré)

are incorrect, as can be seen in Figure 2. The system evidently does not have sufficient

ergodicity to provide the correct energetic distribution on the timescale of interest.

Several techniques have been proposed to improve ergodicity in molecular simulations.

In [12] a Nosé-Hoover chain method was developed which coupled additional thermostat-

3 The use of solvated models raises some additional issues regarding bond thermalization and

the selection of parameters for some of our methods. These results will be reported elsewhere.
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ting variables to the system degrees of freedom, retaining the property that integration

over the auxiliary variables reduced sampling of the extended microcanonical phase space

to canonical sampling of H . As this extension is based on Nosé-Hoover, it also sacri-

fices the Hamiltonian structure: the additional variables are introduced in such a way

that the extended system is only time-reversible, so that methods based on this scheme

cannot be reversible-symplectic. In [14, 13, 8] several new Hamiltonian-based multiple

thermostat schemes have been developed. Nosé-Poincaré chains, described in [13] are

the natural analogue of Nosé-Hoover chains. The more recent recursive multiple thermo-

stat (RMT) schemes of [8] are a new departure, obtaining thermalization from a more

complicated interaction of thermostat variables with the physical variables. A careful

analysis of Nosé dynamics and RMT schemes for harmonic models was performed in

[8]; arguments presented there and numerical evidence suggest that the formulation is

potentially superior to other dynamical alternatives, including Nosé-Hoover chains, in

obtaining well-equilibrated sampling sequences for the canonical ensemble. However, the

results of [8] have so far only been verified for harmonic oscillators and coupled harmonic

models.

The method of Gaussian moment thermostatting [6] also attempts to address incorrect

thermalization of Nosé-Hoover methods, but was not considered here. In this paper we

study the convergence to ensemble for chains and recursive methods applied to biomolec-

ular models. We first discuss problem formulation and computation of temperature in

all-atom biomolecular models.
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2 Molecular dynamics formulation

In this article, we treat a classical all-atom N-body model. The Hamiltonian is of the

form

H(q1, q2, . . . qN , p1, p2, . . . pN) =

N
∑

i=1

p2
i

2mi

+ V (q1, q2, . . . qN ).

Here mi represents the mass of the ith atom, qi ∈ R3 and pi ∈ R3 are Cartesian position

and momentum vectors of the atomic point masses, and K and V represent kinetic and

potential energy, respectively. The potential energy function can be decomposed into a

sum of terms, including pairwise (distance dependent) short-ranged Lennard-Jones po-

tentials VLJ , Coulombic potentials due to charges on the atoms VC , and potential energies

that describe the covalent bonding structure of the molecule, including V
(2)
B , V

(3)
B , V

(4)
B ,

representing 2-atom (length bond), 3-atom (angle bond), and 4-atom (dihedral angle)

terms, respectively. In vacuum, with internal potentials only, the system described above

is invariant under translations and rotations, thus it would admit six conserved quan-

tities (linear and angular momentum). In practice, most biomolecular simulations also

incorporate a collection of water molecules and are performed using periodic boundary

conditions, meaning that the system is allowed to interact with copies of itself extended

along the cubic lattice vectors. In this setting, the angular momentum conservation is bro-

ken, although the translational symmetry (and with it linear momentum conservation)

is still present.

Although it is a slight abuse of language, we define the instantaneous temperature as

the average kinetic energy per degree of freedom:
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Tinst(p1, p2, . . . pN ) =

(

1

(3N − d)kT

) N
∑

i=1

p2
i

2mi

,

where N is the number of atoms, kB is the Boltzmann constant and g ≡ 3N − d is

the number of degrees of freedom (d is the number of conserved quantities in the dy-

namics). For example, in a simulation without periodic boundary conditions, common

microcanonical integrators such as Verlet conserve both linear and angular momentum,

so d = 6. In the presence of periodic boundary conditions we have d = 3. Standard

Langevin dynamics, in which no quantities are conserved, has d = 0. The ergodic hy-

pothesis of statistical mechanics states that time averages will (eventually) converge to

ensemble averages:

lim
t→∞

〈Tinst〉t = 〈T 〉ensemble.

In this article we will need to discuss convergence to ensemble in different variables.

When conserved quantities are present in a Hamiltonian system, the usual equipartition

result must be adjusted. Indeed, we no longer observe equipartition, but there is still

an appropriate partition of kinetic energies. Assuming that the trajectories sample from

the canonical ensemble (in the microcanonical case, this is essentially equivalent to as-

suming ergodicity and a sufficiently large system) we have, assuming linear momentum

conservation [18],
〈

p2
ix

2mi

〉

=
M − mi

M

kBT

2
. (1)

A simple, direct proof of this result can be constructed by integrating the Nosé Hamil-

tonian partition function. In anticipation of work on solvated systems, we introduced a

weak anisotropic interaction potential between a single pair of backbone atoms (the C-C

bond at the N-terminus of alanine dipeptide) in our constant energy simulations of the
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form

φanisotropy(qi, qj) =
k1

2
(xi − xj)

2 +
k2

2
(yi − yj)

2 +
k3

2
(zi − zj)

2.

(Modest values of the three constants were used: k1 = 0.1, k2 = 0.15, k3 = 0.2.) This

has the effect of breaking angular momentum in vacuum simulations, while leaving linear

momentum invariant, so that (1) can be used to compute subsystem temperatures.4

For trajectories generated according to the Nosé Hamiltonian, linear and angular

momentum are conserved only weakly, in the sense that these quantities are conserved

if initialized to zero, but will vary from any nonzero initial condition. In the simulations

reported here, the linear momentum was set to be zero initially, and was conserved

throught the trajectories. The angular momentum was initially nonzero (but small, on

the order of 10−3), and was observed to vary over the course of the simulation. Hence

the number of conserved quantities for all variants of Nosé-Hoover and Nosé-Poincaré

was d = 3.

4 The method for calculation of instantaneous kinetic temperature for a subsystem has not

been widely reported in the literature, but is needed in practice. In particular, both old

and new variants of Nose-Hoover dynamics implemented in CHARMM have the option of

thermostatting subsystems separately, thus necessitating the calculation of the temperature

of subsystems and correct handling of the degrees of freedom. However, this seems to be done

incorrectly in CHARMM (version c31b1): the first specified subsystem s, with Ns atoms, is

assigned gs = 3Ns

− 6 degrees of freedom, with each successive subsystem m being assigned

the full gm = 3Nm.
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3 Thermostatting using Nosé-Hoover chains, Nosé-Poincaré and

RMT methods

Because correct thermalization is not achieved by the use of the Verlet or Nosé-Hoover

methods, as shown in Figures 1 and 2, we studied the Hamiltonian Nosé-Poincaré method

and some methods which are designed to achieve enhanced thermalization: Nosé-Hoover

chains and RMT. It is well known [5, 8, 12] that the correct choice of parameters is

essential if these methods are to thermostat the model correctly, and we here consider

the different methods proposed for choosing them.

3.1 Nosé-Poincaré and RMT methods

The Nosé-Poincaré method [4] involves direct symplectic discretization of the Hamilto-

nian

HNP = s
[

H − HNose
0

]

.

Here HNose
0 is the initial value of the Nosé Hamiltonian and leads to the Nosé-Poincaré

Hamiltonian

HNP (q, s, p, ps) = s

(

H
(

q,
p

s

)

+
p2

s

2Q
+ NfkT ln s − H0

)

. (2)

The numerical method proposed in [4] was the generalized leapfrog method. Although

this method is typically implicit, in the case of the Nosé-Poincaré system, the numerical

challenge reduces to solving a scalar quadratic equation, and it is this variation which

we implemented in CHARMM.

The RMT method [8] is produced by applying additional thermostats to the Nosé-

Poincaré method recursively, with each additional thermostat acting on the previous one
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in addition to the original system. As discussed in [8], the stability of the numerical

implementation of Nosé-Poincaré chains is not as good as the underlying Nosé-Poincaré

method. The RMT method [8] corrects this deficiency while introducing a stronger cou-

pling between bath and phase variables. With M thermostats, the recommended RMT

formulation is:

HRMT = s1s2 · · · sM





N
∑

i=1

p2
i

2mis2
1 · · · s

2
M

+ V (q) +

M−1
∑

j=1

p2
sj

2Qjs2
j+1 · · · s

2
M

+
p2

sM

2QM

+ gkT ln s1

+

M
∑

j=2

((Nf + j − 1)kT ln sj + fi(si)) − H0



 ,

where g = Nf and H0 is chosen so that the initial value of HRMT is zero. This formulation

introduces a number of additional parameters, some of which are dependent on the choice

of the fi(si). A recommended choice for these functions is

fi(si) =
(aj − sj)

2

2Cj

. (3)

The value ai is chosen as the required average value of si, generally 1, as the additional

term will operate as a negative feedback loop to minimize (ai − si), as can be seen from

the equations of motion. In the context of Nosé-Poincaré chains the value of Ci, i ≥ 2 can

be estimated by considering the equations of motion for the ith thermostat. From this we

see that si is driven by the changes in psi−1
. The purpose of the auxiliary function is to

limit the excursions of si, which can be achieved if dsi/dpsi−1
is a maximum at si = ai.

It was shown in [13] that Ci should satisfy,

Ci ≤
a2

i

8kT
. (4)
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For RMT, the choice of Ci is less clear but numerical experiments indicate that a similar

upper bound on Ci. Experiments also suggest that the precise choice of Ci is not as

critical to effectiveness of RMT as is selection of thermostat mass parameters.

We note that the generalized leapfrog RMT discretization, which was used in the

numerical experiments reported here, is limited by numerical stability to a substantially

smaller timestep than Verlet and the Nosé-Hoover methods are able to use. Work on

improving the stable timestep (and hence numerical efficiency) by enhancement of the

RMT numerical integrator is ongoing.

3.2 Choice of the Nosé mass: ideas from the literature

All methods based on the work of Nosé [5] have parameters. Although the proofs of

canonical sampling (which assume ergodicity) are not strictly speaking dependent on

their values, a careful choice is needed in order for good sampling to be observed in

practice. In standard Nosé dynamics the only parameter is the Nosé mass Q in (1).

For the purpose of this discussion we will consider the time reparameterized variation

of Nosé’s scheme, the Nosé-Poincaré method [4, 16], which produces trajectories in real

time and has the advantage of being Hamiltonian-based (2). Various attempts have been

made to identify the optimal value for Q [5, 9, 8], and these are examined below.

Choice of Q based on total kinetic energy

In molecular dynamics the temperature of a system, at equilibrium, can be defined as,

T =
1

Nfk

〈

N
∑

i=1

p̃2
i

mi

〉

. (5)
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From this it is tempting to assume that if this criterion is met then the system must be

at equilibrium. However thermostatting methods derived from Nosé’s scheme are based

on a “negative feedback loop” which controls the average kinetic energy such that (5)

is satisfied. This can be seen by considering the equations of motion for the thermostat

conjugate momentum,

ṗs =

N
∑

i=1

p2
i

mis2
− NfkT. (6)

Taking averages, assuming time averages of time derivatives disappear and substituting

p̃i = pi/s gives (5). From this we see that (5) is satisfied for all values of Q, whereas it

is known that the correct sampling is not obtained unless Q is chosen correctly.

If we study (6) carefully we see that the method only guarantees that the total

average kinetic energy is fixed, it does not indicate what happens to subsystems. From

the equipartition theorem we have that,

〈

p̃2
i

mi

〉

= kT all i. (7)

If we look at individual sub systems we find that (7) is not satisfied for all Q, as seen in

Figure 3, and hence it is not possible to choose Q in this manner.

Choice of Q based on self-oscillation frequency

By utilizing linearization methods Nosé determined [5] that, for time re-parameterized

thermostatting methods, the thermostat subsystem has a natural frequency

ωN =

√

2NfkT

Q
. (8)

It has been proposed [5] that setting Q so that this frequency is close to some natural

frequency in the original system would induce resonance between the system and thermo-
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Fig. 3. Average kinetic energy for subsystems of alanine dipeptide consisting of the hydrogen

atoms, oxygen atoms, nitrogen atoms and carbon atoms for a 5ns simulation time with Q = 2.0

using the Nosé-Poincaré method.

stat, and hopefully ergodic behavior. Although the need to increase Q with the number

of degrees of freedom Nf and the temperature T can be verified empirically, setting the

value of Q according to (8) generally gives poor results. In fact it is observed that if the

thermostat subsystem oscillates at its resonant frequency then it becomes decoupled from

the system [12, 8], and poor sampling is obtained. For systems of harmonic oscillators it

can be shown [8] that the optimum choice of Q does not coincide with this estimate. As

an example, for a single harmonic oscillator of frequency 1 it has been found [8] that the

optimum value of Q is around 0.3 where Nosé’s estimate predicts Q = 2.

Choice of Q based on control of average thermostat kinetic energy

It can be shown [8], under the assumption of ergodicity, that the following holds,
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〈

p2
s

Q

〉

= kT, (9)

where ps is the thermostat conjugate momentum. For harmonic oscillators the value of

this quantity is a good indicator of the optimum choice of Q [8].

The value of
〈

p2
s/Q

〉

was examined for Q in the range 0.1 to 1000 for a model of alanine

dipeptide, using the CHARMM molecular dynamics package. In this case the value of

〈

p2
s/Q

〉

was found to be close to kT for all values of Q tested, over a sufficiently long

integration time, indicating that this method fails for complex systems of biomolecules.

Choice of Q based on kinetic energy distribution

In [9] it was proposed that the optimum value of Q could be obtained by comparing the re-

sulting total energy distribution with the expected canonical distribution. For crystalline

Aluminum it was found that a broad range of Q, 100 to 10000, gave good convergence

to the correct distribution and it was concluded that, for this model, the value of Q was

not critical.

Applying the same method to the alanine dipeptide produced similar results with Q

in the range 0.1 to 1000 giving good total energy distributions. In this case we know

that, for most of these values of Q, good sampling is not obtained when considering the

average kinetic energy of subsystems.

3.3 A new approach to Nosé masses based on minimization of 〈s〉

We now propose a new scheme for choosing thermostat masses. This new method, which

has produced the promising results reported below, will be examined in fuller detail in
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a related publication. It has been shown [8] that for systems of harmonic oscillators

the average value of the thermostatting variable s, when sampling from the canonical

ensemble, is

〈s〉c = exp

(

H0

NfkT

) (

Nf

Nf + 1

)

.

2Nf +1

2

(10)

In the limit of large Nf , this is equivalent to

〈s〉c = exp

(

H0

NfkT
− 1

)

, (11)

and this is found to be a good approximation for all Nf .

We can rearrange (2), given that H0 is chosen such that HNP = 0, as follows:

ln s =





H0 − H
(

q, p
s

)

−
p2

s

2Q

NfkT



 . (12)

As Q → ∞ we expect that
〈

p2
s/Q

〉

→ 0 and s → 〈s〉, and hence 〈ln s〉 → ln〈s〉. We also

note that, for harmonic oscillators, the following holds:

〈KE〉 = 〈PE〉 , (13)

where KE is the kinetic energy and PE is the potential energy. Taking averages of (12)

and rearranging then gives,

〈s〉Qlim = exp

(

H0

NfkT
− 1

)

. (14)

Since (11) is the same as (14) the average value of s in the limit of large Q is the same

as the average value of s when sampling from the canonical ensemble for systems of

harmonic oscillators.

It is of interest to examine the average value of s as we decrease Q and the system is

somewhere between these two regimes. We can highlight the difference between the two
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regimes by taking averages in (12), for the canonical ensemble we have,

〈ln s〉c =





H0 −
〈

H
(

q, p

s

)〉

−
〈

p2
s

2Q

〉

NfkT



 ,

=

(

H0 − (Nf + 1
2 )kT

NfkT

)

. (15)

For the limit of large Q,

〈ln s〉Qlim =

(

H0 − NfkT

NfkT

)

. (16)

We note that that, although 〈s〉c = 〈s〉Qlim, we have 〈ln s〉c < 〈ln s〉Qlim. This is due

to the probability distribution of s, which in the canonical ensemble is log-normal (in

the limit of Nf → ∞) giving rise to the difference in the ln s averages and funding the

additional energy required by the
〈

p2
s/2Q

〉

term.

If we let Qc be the optimum value of Q for canonical sampling then our intermediate

regime occurs when ∞ > Q > Qc , and here we expect that
〈

p2
s/Q

〉

> 0. Since the

system is not sampling from the canonical ensemble s will not have the required log-

normal distribution and 〈ln s〉 will not provide the additional energy for
〈

p2
s/2Q

〉

. If we

assume that, away from equilibrium, 〈ln s〉∗ = 〈ln s〉Qlim, then

〈V (q)〉
∗

= 〈V (q)〉Qlim −
〈

p2
s/2Q

〉

∗
, (17)

where the ∗ subscript represents the averages in the intermediate regime.

Reducing the average potential energy for harmonic oscillators, is equivalent to re-

ducing the average kinetic energy from (13) and hence the average value of s will have

to increase to accommodate this (the average kinetic energy in the re-scaled momenta is

fixed due to the feedback loop, but the reduction can be seen in the original momenta).

From this we would expect that the average value of s would have minima where the
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system is sampling from the canonical ensemble and in the limit of large Q. Experiments

with a harmonic oscillator show that this is indeed the case.

Although some of the assumptions above do not hold for typical molecular dynam-

ics models, the critical requirement that s has a log-normal probability distribution is

nonetheless verified in practice. From this we would expect that the average of s will be

minimized when sampling from the canonical ensemble. To verify this 〈s〉 was measured

for various Q for a simulation of an alanine dipeptide molecule in the popular CHARMM

package with the results in Figure 4. The figure shows a well defined minimum, and sug-
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Fig. 4. Average s against Q showing minimum at Qc = 0.3.

gests that the optimal value is around Q = 0.3. Simulations of the alanine dipeptide

model were conducted at 300K with Q = 0.3. Average energies for hydrogen and heavy

atoms are shown in Figure 5. Although exact equipartition does not occur in this ex-

periment, the results are the best obtained from numerous Nosé-Poincaré simulations.
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Fig. 5. Average kinetic energy for subsystems of alanine dipeptide consisting of the hydrogen

atoms and the heavy atoms for a 5ns simulation time with Q = 0.3 using the Nosé-Poincaré

method.

3.4 Preliminary experiments with RMT and Nosé-Hoover Chains

The results we describe here are obtained in all atom CHARMM simulations [1, 2] of

the alanine dipeptide in vacuum, with nonbonded terms computed without cutoffs. The

starting structures were equilibrated with a 50 ps heating cycle, followed by 200ps of

equilibration at 300K. The Verlet, Nosé-Hoover and Nosé-Hoover Chain trajectories were

generated with a 1 fs timestep, the accepted standard for biomolecules. We used a some-

what conservative timestep of 0.02 fs for RMT. To ensure that the comparison between

RMT and Nosé-Hoover methods is valid, we have verified that the the smaller timesteps

used in RMT did not improve the thermostatting properties of the Nosé-Hoover methods.

In Section 3.3, Figure 5, we saw that, for the correct choice of parameters, the Nosé-

Poincaré method produces much better results than the Verlet or Nosé-Hoover method.
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With chains and RMT methods additional parameters need to be selected. Our method-

ology is to select the value of the first Nosé mass by the “minimum average thermostat

variable” scheme and subsequent masses to be close to, but greater than, the previous

mass

Qi+1 ≈
3

2
Qi. (18)

For the RMT method the Ci were selected as Ci = 1/16kT in accordance with (4). The

results for the RMT method are seen in Figure 6, where good results are obtained for

the suggested choice of parameters.

We also implemented Nosé-Hoover chains in CHARMM, using an explicit integrator

described by Jang and Voth [3]. The results for the Nosé-Hoover chains are seen in Figure

7 where, even with optimum values for the Nosé masses, the thermalization is extremely

slow. Results for many other values of the parameters were either similar or worse.

4 Conclusions

It is clear from the preceding experiments that the choice of the parameters applicable to

Nosé methods is critical in obtaining good sampling. We observe that, even for methods

which are expected to enhance the ergodicity, the range of parameter values which yield

good results is small. Experiments with Nosé-Hoover chains indicate that equipartition

does not occur far from the optimal choice of Nosé mass, and similar results are seen for

RMT.
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Fig. 6. Cumulative average temperature, and temperature of subsystems computed by a 5ns tra-

jectory for alanine dipeptide using the RMT method implemented in CHARMM, with optimum

Q = 0.3.

The timestep limitation which we have encountered illustrates the need for more

careful numerical treatment of the thermostat variables in RMT. It is generally believed

that solvated models do not display the equipartition problems reported here, but ini-

tial experiments by the authors indicate otherwise. These issues will be addressed in a

subsequent article.

Many methods for determining the optimum value of the thermostat mass in Nosé

dynamics have been proposed. Our examination of these methods has shown that, at

best, most provide a poor indicator of the optimum value in the setting of biomolecules.

Further study of the method presented here based on the “minimum average thermostat

value” will be undertaken to provide a better understanding of this technique in the

molecular dynamics setting.
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Fig. 7. Cumulative average temperature, and temperature of subsystems computed by a 5ns

trajectory for alanine dipeptide using the Nosé-Hoover chains in CHARMM with optimum

Q = 0.3. The system requires a long time (4ns) to reach equiparon.
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